NI Jia-sheng, CHANG Jun, LIU Tong-yu, WANG Chang, SONG Zhi-qiang, ZHAI Rui-zhan. Spontaneous combustion prediction in coal mine goaf based on fiber sensing of gas[J]. Journal of Applied Optics, 2009, 30(6): 996-1002.
Citation: NI Jia-sheng, CHANG Jun, LIU Tong-yu, WANG Chang, SONG Zhi-qiang, ZHAI Rui-zhan. Spontaneous combustion prediction in coal mine goaf based on fiber sensing of gas[J]. Journal of Applied Optics, 2009, 30(6): 996-1002.

Spontaneous combustion prediction in coal mine goaf based on fiber sensing of gas

More Information
  • The principle of gas detection with spectrum absorption is explained and the typical gas in coal mine is given. A goaf spontaneous combustion prediction system with multiple parameters is introduced in detail. The system uses a distributed feedback diode laser as light source, which is driven by a low frequency sawtooth wave overlapped with a high-frequency sinusoidal signal. Signal extraction is achieved with a lock-in amplifier. The method to determine spontaneous combustion of coal mine goaf is explained according to the theory of static distribution of three zones. The system uses fiber to detect gas and transmit signal, which makes the real time detection accurate, stable and reliable due to absence of electricity.
  • [1]王省身,张国抠.矿井火灾防治[M].徐州:中国矿业大学出版社,1990.
    WANG Xing-shen,ZHANG Guo-kou. Mine fire control[M]. Xuzhou: China University of Mining and Technology Press,1990. (in Chinese)
    [2]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25(3): 111-114.
    LI Zeng-hua. Mechanism of free radical reactions in spontaneous combustion of coal[J]. Journal of China University of Mining & Technology, 1996,25(3): 111-114. (in Chinese with an English abstract)
    [3]MARTINA R R, MACPHEE J A, WORKINTON M, et al. Measurement of the activation energy of the low temperature oxidation of coal using secondary ion mass spectrometry[J]. Fuel, 1989,68(8):1077-1079.
    [4]LOPEZA D, SANADAB Y, MONDRAGON F. Effect of low-temperature oxidation of coal on hydrogen-transfer capability[J]. Fuel,1998,77(14):1623-1628.
    [5]WANG H, DLUGOGORSKI B Z, KENNEDY E M. Theoretical analysis of reaction regimes in low-temperature oxidation of coal[J]. Fuel,1999,78(9):1073-1081.
    [6]王华,王连华.煤自然发火实验温度监测系统[J]. 煤炭学报,2006,31(1):67-71.
    WANG Hua, WANG Lian-hua. Temperature measurement system for coal spontaneous combustion experiment[J]. Journal of China Coal Society,2006,31(1):67-71. (in Chinese with an English abstract)
    [7]REN T X, RICHARDS M J. Computerized system for the study of the spontaneous combustion of coal[J]. Mining Engineer, 1994,154(398):121-127.
    [8]齐庆杰,黄伯轩.用计算机模拟法判断采空区自然发火位置[J].煤炭工程师, 1997(5):7-9.
    QI Qing-jie, HUANG Bo-xuan. Spontaneous combustion position judgment of goaf in coal mine using computer simulation[J]. Coal Engineer,1997(5):7-9. (in Chinese with an English abstract)
    [9]TSUKIOKA H, SUGAWARA K. New apparatus for detecting transformer faults[J]. IEEE Transactions on Electrical Insulation,1986,21(2):24-35.
    [10]黄尚廉, 陈伟民, 黎学明. 拉曼光谱学用于监测变压器油中的甲烷气体的研究[J]. 传感技术学报,1998,3(1):25-27.
    HUANG Shang-lian, CHEN Wei-min, LI Xue-ming. Measuring methane dissolved in transformer oil by Raman spectra[J]. Journal of Translocation Technology, 1998,3(1):25-27. (in Chinese with an English abstract)
    [11]DUBANIEWICZ T H, CHILTON J E, DOBRO-SKI H. Fiber optics for atmospheric mine monitoring[J]. IEEE Transactions on Industry Applications, 1993, 29(4):749-753.
    [12]陈立, 武江河, 郭鑫禾. 煤炭自燃标志性气体预测指标的实验研究[J]. 河北工程大学学报(自然科学版), 2007,24(4):94-96.
    CHEN Li, WU Jiang-he, GUO Xin-he. Study on the forecasting target of coal spontaneous combustion[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2007,24(4):94-96. (in Chinese with an English abstract)
  • Related Articles

    [1]WU Xuan, ZHANG Haiyang, ZHAO Changming, LI Zhipeng, WANG Yuanze. Improved YOLOv4 for real-time detection algorithm of low-slow-small unmanned aerial vehicles[J]. Journal of Applied Optics, 2024, 45(1): 79-88. DOI: 10.5768/JAO202445.0102002
    [2]WU Liequan, ZHOU Zhifeng, ZHU Zhiling, ZHANG Wei, WANG Yong. Surface defect detection of patch diode based on improved YOLO-V4[J]. Journal of Applied Optics, 2023, 44(3): 621-627. DOI: 10.5768/JAO202344.0303007
    [3]Gu Zhaobing, Hao Shujie, Wang Lei, Xu Rongguo, Yin Wanhong. Laser polarimeter based on rotary 1/4 waveplate[J]. Journal of Applied Optics, 2018, 39(6): 936-941. DOI: 10.5768/JAO201839.0607004
    [4]Fang Jiulong, Chang Jianhua, Dai Feng, Liu Zhenxing, Dou Xiaolei, Zhao Yongyi. Research on methane gas spectroscopy detection method based on mid-infrared DFG laser source[J]. Journal of Applied Optics, 2018, 39(5): 735-742. DOI: 10.5768/JAO201839.0506001
    [5]Chen Lig-ang, Feng Wei-wei. System-level calibration of achromatic λ/4 wave-plate[J]. Journal of Applied Optics, 2015, 36(6): 905-908. DOI: 10.5768/JAO201536.0603001
    [6]ZHANG Yang, ZHAG Ji-long, DU Xuan-yan. Weak signal detection circuit based on HgCdTe IR detector[J]. Journal of Applied Optics, 2011, 32(4): 779-783.
    [7]LI Cheng-rong, CHEN Xiu-yan, LI Xiu, CHEN Hao-wei, REN Zhao-yu, BAI Jin-tao. Realization of four-wavelength laser simultaneous output by LD sidepumped Nd∶YAG[J]. Journal of Applied Optics, 2008, 29(6): 970-974.
    [8]CHEN Li. Design of 4f system to implement optical wavelet transform[J]. Journal of Applied Optics, 2008, 29(supp): 53-58.
    [9]GUO Li-hua, YANG Wen-qin, FENG Shang-yuan. Absorption spectrum analysis of Nd∶KY(WO4)2 and Nd∶KG(WO4)2 crystals[J]. Journal of Applied Optics, 2007, 28(3): 371-375.
    [10]QIAN Xiang-zhong. Study of CH4 opticalfiber sensor structure[J]. Journal of Applied Optics, 2005, 26(6): 38-40.

Catalog

    Article views (5830) PDF downloads (1153) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return