CHANG Fang-Fei, ZHANG Zhi-Min. Error analysis of common iterative reconstruction algorithmsin optical chromatographic technique[J]. Journal of Applied Optics, 2009, 30(4): 616-621.
Citation: CHANG Fang-Fei, ZHANG Zhi-Min. Error analysis of common iterative reconstruction algorithmsin optical chromatographic technique[J]. Journal of Applied Optics, 2009, 30(4): 616-621.

Error analysis of common iterative reconstruction algorithmsin optical chromatographic technique

More Information
  • In order to get the perfect reconstruction result, the reconstruction parameters of the common iterative algorithms as ART and SIRT used in the optical chromatographic technique are analyzed. The reconstruction requirement was satisfied by selecting the appropriate reconstruction parameters, comparing the reconstruction errors (average error, max error, root-mean-square error), and implementing the computer numeric simulation. This simulation proves that the selection of relaxation factors has a very important influence on the iterative reconstruction algorithms. In ART, while the other conditions are unchanged, the relaxation factor range from 0.4 to 1.5 can meet the requirement of reconstruction accuracy basically and the best selection is 0.8. In SIRT, the relaxation factor range from 4 to 12 is appropriate and 12 is the best selection. The influence of the relaxation factor on the iterative reconstruction algorithms was studied, and the selection law of the relaxation factor under different conditionswas summarized in the algebraic reconstruction technique and simultaneous iterative reconstruction technique. In ART, the relaxation factor will decrease if the number of projection direction increases but the number of each direction projection and reconstruction resolution have no influence on it, and the error will increase if the number is too big or too small while the relaxation factor is unchanged. In SIRT, the relaxation factor will decrease if the number of projection direction increases, and the optimal relaxation factor will decrease 50% if it increases 2 times; the optimal relaxation factor will decrease if the number of every direction projection increases, and the optimal relaxation factor will decrease 50% if it increases 2 times; the relaxation factor will increase if the reconstruction resolution increases.
  • [1]WAN Xiong,YU Sheng-lin, GAO Yi-qing,et al.Self-adaptive reconstruction algorithm for emission spectral volume tomography[J]. Opt.Eng.,2004,43(5):1244-1250.
    [2]WAN Xiong,GAO Yi-qing,YU Sheng-lin. Study of limited-view tomography algorithms for plasma diagnostics[J]. Plast. Eng.(Brookfield,Conn), 2002,(4927):625-633.
    [3]宋一中,胡国英,贺安之.简单自相关代数迭代重建算法[J].光谱学与光谱分析,2006,26(12):2364-2367.
    SONG Yi-zhong, HU Guo-ying, HUO An-zhi. Simple self-correlative algebraic reconstruction technique[J].Spectroscopy and Spectral Analysis, 2006,26(12): 2364-2367. (in Chinese with an English abstract)
    [4]张凯,朱佩平,黄万霞,等.代数迭代重建算法在折射衬度CT中的应用[J].物理学报, 2008,(06):3410-3418.
    ZHANG Kai,ZHU Pei-ping, HUANG Wan-xia,et al. The application of algebraic reconstruction techniques in X-ray refraction contrast CT[J].Acta Physica Sinica,2008,(06):3410-3418. (in Chinese with an English abstract)
    [5]向良忠,邢达,谷怀民,等.改进的同步迭代算法在光声血管成像中的应用[J].物理学报, 2007,56(07):3911-3916.
    XIANG Liang-zhong,XING Da,GU Huai-min,et al. Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction technique.Acta[J]. Physica Sinica.2007,56(07):3911-3916. (in Chinese with an English abstract)
    [6]李尊营,宋一中. 复杂流场的代数迭代重建算法[J].光电子·激光,2006,17(10):1259-1263.
    LI Zun-ying;,SONG Yi-zhong. Simple self-correlative algebraic reconstruction technique for complicated flow field[J]. Journal of Optoelectronics Laser, 2006,17(10):1259-1263. (in Chinese with an English abstract)
  • Related Articles

    [1]HU Jingsen, HUANG Min, GAO Han. Error analysis on dihedral angle of corner-cube reflectors in Fourier transform spectrometer[J]. Journal of Applied Optics, 2022, 43(5): 959-966. DOI: 10.5768/JAO202243.0503005
    [2]XU Shuai, HAN Sen, WU Quanying, ZHANG Linghua, WANG Quanzhao, CHEN Qiubai, WANG Yan. Misalignment analysis of cylindrical outer surfaces in interferometric measurement[J]. Journal of Applied Optics, 2020, 41(5): 1005-1013. DOI: 10.5768/JAO202041.0503001
    [3]ZHANG Wenying, ZHU Haoran. Error analysis and correction of circular grating angle measurement system[J]. Journal of Applied Optics, 2019, 40(3): 399-403. DOI: 10.5768/JAO201940.0301007
    [4]HAO Renjie, WANG Zhongyu, LI Yaru. Error analysis method for monocular vision pose measurement system[J]. Journal of Applied Optics, 2019, 40(1): 79-85. DOI: 10.5768/JAO201940.0103001
    [5]Zhang Jianlong, Pan Xin, He Lei, Yang Zhen, Guo Xinmin, Kang Weimin. Error analysis of optical system for full-view and high-precision three-dimensional measuring instrument[J]. Journal of Applied Optics, 2018, 39(3): 392-399. DOI: 10.5768/JAO201839.0303004
    [6]Chen Zhibin, Fan Lei, Xiao Wenjian, Qin Mengze, Xiao Cheng, Zhang Dongxiao. Directional error analysis of 2D galvanometer scanning system[J]. Journal of Applied Optics, 2018, 39(2): 180-186. DOI: 10.5768/JAO201839.0201004
    [7]Peng Fu-lun, Wang Jing, Wu Yi-lei, Guo Cheng. Object positioning and error analysis of vehicular electro-optical reconnaissance system[J]. Journal of Applied Optics, 2014, 35(4): 557-562.
    [8]ZHANG Peng-fei, WANG Zhi-bin, LI Xiao, WANG Li-fu. Simulation and tolerance analysis of axicon duct for coupling Cassegrain telescope into multimode fiber[J]. Journal of Applied Optics, 2014, 35(3): 432-437.
    [9]LI Qiang, LIU Ang, GAO Bo, XU Kai-yuan, CHAI Li-qun. Error analysis of absolute test method of inhomogeneity of optical materials[J]. Journal of Applied Optics, 2013, 34(3): 463-468.
    [10]WANG Ke-wei, MA Chao-jie, CHEN Wei, ZHANG Fan. Error analysis for gate centroid tracking algorithm of infrared imaging[J]. Journal of Applied Optics, 2009, 30(2): 353-356.

Catalog

    Article views (2862) PDF downloads (921) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return