TIAN Ming-li, XUE Xi-chang. Optimal design of 3-D superresolution pupil filter[J]. Journal of Applied Optics, 2009, 30(4): 563-566.
Citation: TIAN Ming-li, XUE Xi-chang. Optimal design of 3-D superresolution pupil filter[J]. Journal of Applied Optics, 2009, 30(4): 563-566.

Optimal design of 3-D superresolution pupil filter

More Information
  • Three-zone amplitude-type superresolution pupil filters (1-0-1) and three-zone phase-type superresolution pupil filters (-0-) are designed with Matlab optimization toolbox and non-linear programming. The optimal model is established and some examples of optimization are given. The optimization results show the both filters have preferable 3-D superresolution characteristics, the axial resolution is better than transverse resolution, and the phase-type resolution is better than amplitude-type resolution at the same Strehl ratio. The structures of the both filters are simple and easy to be implemented.
  • [1]BORN M, WOLF E. Principles of optics[M]. London: Cambridge University Press,1999:484-492.
    [2]SHEPPARD C J R, HEGEDUS Z S. Axial behavior of pupil-plane filters[J]. J.Opt.Soc.Am.A, 1988,5(5):643-647.
    [3]MANUEL M C,PEDRO A.Three dimensional sup-errsolution by annular binary filters[J]. Optics Communications,1999,165:267-278.
    [4]丁洪萍,李庆辉,邹文艺.三区振幅型超分辨光瞳滤波器的设计[J].光学学报,2004,24(9):1177-1180.
    DENG HONG-ping,LI Qing-hui,ZOU Wen-yi.Design of 3-zone amplitude-type superresolution pupil filters[J]. Acta Optica Sinica, 2004,24(9):1177-1180. (in Chinese with an English abstract)
    [5]邓小强,王桂英,徐至展.三维超分辨光瞳滤波器[J].中国激光,2001,28(5):461-462.
    DENG Xiao-qiang,WANG Gui-ying,XU Zhi-zhan.3-D superresolution pupil filter[J]. Chinese Journal of Lasers, 2001,28(5):461-462.(in Chinese with an English abstract)
    [6]GU Min, SHEPPARD C J R. Confocal fluorescent microscopy with a finite sized circular detector[J]. J.Opt.Soc.Am.A,1992,9(1):151-155.
  • Related Articles

    [1]WANG Xuelian, WU Zhifeng, SONG Guicai, LU Xiaofeng, DAI Caihong. Measurement of absolute linearity using laser covering large-scale dynamic range[J]. Journal of Applied Optics, 2019, 40(4): 681-685. DOI: 10.5768/JAO201940.0407001
    [2]Cheng Yao, Zhao Jian, Mi Zengzhen. Design of embedded system for optical angle measurement based on linear array CCD[J]. Journal of Applied Optics, 2018, 39(5): 650-654. DOI: 10.5768/JAO201839.0501010
    [3]Bai Yang, Chen Yuhua, Zhang Zenan, Li Weilong, Wang Gang. Experimental study on nonlinear scattering of graphene using tunable mid-infrared laser in 3 μm~5 μm wave band[J]. Journal of Applied Optics, 2016, 37(4): 618-622. DOI: 10.5768/JAO201637.0406001
    [4]WANG Yu-zhi, WAN Sheng-peng, ZHANG Hui. Experimental study and improvement for linear filtering demodulation system of LPFG[J]. Journal of Applied Optics, 2009, 30(1): 125-128.
    [5]YUE Chun-min, YANG Jin-hua, LI Zhi-hong, GU Guo-zhang. 3-D surface reconstruction based on polarization analysis[J]. Journal of Applied Optics, 2008, 29(6): 844-848.
    [6]FU Yan-jun, YANG Kun-tao, HE Xing-dao, ZOU Wen-dong. 3-D step profilometry measurement by grating projection[J]. Journal of Applied Optics, 2007, 28(2): 231-235.
    [7]LI Hao-yu, TANG Hua-ping, HUANG Li, PENG Ya-qing. Design of Clearance Measuring Apparatus Based on Linear Array CCD[J]. Journal of Applied Optics, 2005, 26(2): 18-20.
    [8]ZHOU Xiu-li, TAN Qing-gui, HU Yu. 2-D and 3-D Codes in OCDMA System[J]. Journal of Applied Optics, 2005, 26(2): 15-17.
    [9]ZHAN Chun-lian, LI Yan-mei, LIU Jian-ping, LI Zheng-qi. The Unitormity and Linearity of Infrared Spectral Response of Decector[J]. Journal of Applied Optics, 2004, 25(6): 34-37.
    [10]ZHOU Xiu-li, HU Yu, TAN Qing-gui. A 3-D Code for OCDMA System[J]. Journal of Applied Optics, 2004, 25(4): 18-20.

Catalog

    Article views (2880) PDF downloads (998) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return