WANG Xue-xin, JIAO Ming-yin. Athermalization design for infrared optical systems[J]. Journal of Applied Optics, 2009, 30(1): 129-133.
Citation: WANG Xue-xin, JIAO Ming-yin. Athermalization design for infrared optical systems[J]. Journal of Applied Optics, 2009, 30(1): 129-133.

Athermalization design for infrared optical systems

More Information
  • Corresponding author:

    WANG Xue-xin

  • Athermalization is to eliminate the ambient temperature effect on the performance of optical systems. A passive optical athermalization design was proposed for infrared optical systems. Proceeding from single lens, a set of equations to eliminate the thermal difference of lens group was given. The coefficients for eliminating the thermal difference and chromatism of common infrared materials were described by Cartesian coordinates. The rational combination of infrared materials was derived with the graphical method, and the normalized distribution of focal power was obtained as well. The design process of the passive optical athermalisation was elaborated by an example. The result was analyzed with an optical design software. It shows that the design result meets the requirement of eliminating the thermal difference and chromatism at the temperature range of -40℃~+60℃.
  • Related Articles

    [1]ZHANG Jiyan, LIN Haifeng, HUANG Zhangchao. Compact large relative aperture long wavelength infrared athermalization optical system with chalcogenide glasses[J]. Journal of Applied Optics, 2021, 42(5): 790-795. DOI: 10.5768/JAO202142.0501005
    [2]Xie Hongbo, Meng Qingbin, Yang Lei, Jiang Min, Fang Chunlun, Ren Delun. Athermalization and suppression of narcissus for medium-wave infrared optical system[J]. Journal of Applied Optics, 2017, 38(3): 352-357. DOI: 10.5768/JAO201738.0301003
    [3]Zhang Wanyi. Athermalization design of infrared refractive-diffractive telephoto objective[J]. Journal of Applied Optics, 2017, 38(1): 12-18. DOI: 10.5768/JAO201738.0101003
    [4]DENG Jian, LI Rui-gang, DENG Xian-chi, WU Bin. Athermalizing mirror-lens infrared optical system[J]. Journal of Applied Optics, 2014, 35(1): 146-149.
    [5]LI Yan, ZHANG Bao, HONG Yong-feng, ZHAO Chun-lei. Athermalization of dual field of view infrared system[J]. Journal of Applied Optics, 2013, 34(3): 385-390.
    [6]BAI Yu, XING Ting-wen, LIN Wu-mei, XIE Wei-min. Athermalization of middle infrared optical system[J]. Journal of Applied Optics, 2012, 33(1): 181-185.
    [7]LIU Jun, WU Xiao-chen. Athermalisation of infrared Cassegrain optical system in missile[J]. Journal of Applied Optics, 2012, 33(1): 175-180.
    [8]ZHANG Xu-yan, JIANG Rui-kai, JIA Hong-guang. Athermalization of long-wave infrared optical system with large relative aperture[J]. Journal of Applied Optics, 2011, 32(6): 1227-1231.
    [9]WANG Xue-xin, JIAO Ming-yin. Combination of optical passive and mechanical-electrical athermalisation[J]. Journal of Applied Optics, 2010, 31(3): 354-359.
    [10]SHEN Liang-ji, FENG Zhuo-xiang. Athermal design of refractive/diffractive hybrid infrared optical system working at 3.7μm~4.8μm[J]. Journal of Applied Optics, 2009, 30(4): 683-687.

Catalog

    Article views (3278) PDF downloads (1454) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return