WANG Shi-yu, WANG Xin-yuan, GUO Zhen, CAI De-fang, WEN Jian-guo, LI Bing-bin. Estimation method to eliminate effects of pumping light on space distribution of laser beam[J]. Journal of Applied Optics, 2007, 28(1): 63-67.
Citation: WANG Shi-yu, WANG Xin-yuan, GUO Zhen, CAI De-fang, WEN Jian-guo, LI Bing-bin. Estimation method to eliminate effects of pumping light on space distribution of laser beam[J]. Journal of Applied Optics, 2007, 28(1): 63-67.

Estimation method to eliminate effects of pumping light on space distribution of laser beam

More Information
  • Corresponding author:

    WANG Shi-yu

  • A mathematical parameter δ is adopted to assess the different space distribution in two laser fields. The effect of the pumping light space distribution on the quality of the ground-mode oscillating beam is analyzed by applying δ in the resonant cavity. The analysis for the effect shows that the ground-mode oscillating beam will drift off the Gauss distribution if the nonequilibrium gain distribution is caused by pumping light in the laser medium. With the parameterδ, the quantitative estimation was carried out for the effect of the pump light on the quality of oscillating beam. The investigation shows that the parameterδ, can directly represent the effect of pumping light distribution on the beam quality of laser, and the value of the parameterδ can be used to judge the pumping light distribution quality. As for the endpumping DPL with continuous operation, the most ideal distribution mode of the pumping light is the Gauss pumping light and its diameter is equal to that of the fundamentalmode Gauss oscillating beam of the resonant cavity.
  • Related Articles

    [1]ZHANG Jing, LI Yongqian. High-sensitivity refractive index sensor based on FMF-CLF-FMF optical fiber structure[J]. Journal of Applied Optics, 2023, 44(2): 462-468. DOI: 10.5768/JAO202344.0208002
    [2]XU Yue, XUE Peng, ZHANG Rui, CHEN Yuanyuan. Plasmon resonance refractive index sensor of spiral-shaped plastic optical fiber surface[J]. Journal of Applied Optics, 2023, 44(1): 226-233. DOI: 10.5768/JAO202344.0108002
    [3]ZHAO Shuaichang, WANG Zijie, LIU Xiaochen, WANG Kehong, CHEN Yiqi, YANG Yong, ZHANG Qi, ZHANG Xiaobei. Package of hollow micro-bottle resonator and refractive index sensing properties[J]. Journal of Applied Optics, 2022, 43(5): 1001-1006. DOI: 10.5768/JAO202243.0508002
    [4]LIU Qinpeng, HE Xue, JIA Zhen'an, FU Haiwei, GAO Hong, YU Dakuan. Research on theoretical model of high sensitivity fiber Bragg grating accelerometer[J]. Journal of Applied Optics, 2019, 40(5): 910-917. DOI: 10.5768/JAO201940.0508002
    [5]LIU Qin-peng, HE Xue, JIA Zhen-an, FU Hai-wei, GAO Hong, YU Da-kuan. Research on Theoretical Model of High Sensitivity Fiber Bragg Grating Accelerometer[J]. Journal of Applied Optics.
    [6]GAO Ping-an, RONG Qiang-zhou, SUN Hao, HU Man-li. High-sensitive fiber-optic refractometer constructed by core-diameter-mismatch welding[J]. Journal of Applied Optics, 2013, 34(3): 542-546.
    [7]ZHOU Chun-xin, HUANG Ping, ZENG Qing-ke, QIN Zi-xiong. Simulation study on the relation between the structural parameters and the transmission spectra of a long period fiber grating[J]. Journal of Applied Optics, 2010, 31(4): 632-635.
    [8]WANG Guo-dong, AI Yong-le. Analysis of coupled precision in characteristic calculation for long period fiber gratings with a rectangular index modulation[J]. Journal of Applied Optics, 2010, 31(4): 617-619.
    [9]YE Mei, FENG Xian-qun, YE Hu-nian. The Study of the Resonant Wavelengths of Long-period Fiber Grating with Langmuir-Blodgett Thin-film Overlay[J]. Journal of Applied Optics, 2004, 25(5): 43-46.
    [10]LI Zhi-quan, WANG Li, HUANG Li-juan, ZHANG Xiao-ming, ZHU Dan-dan. Study on Refractive Index and Concentration Sensor Based on Long-Period Fiber Grating[J]. Journal of Applied Optics, 2004, 25(4): 48-50.

Catalog

    Article views (3027) PDF downloads (839) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return