ZOU Shi-qian, ZHOU Ji. Application analysis of lidar in range measurement[J]. Journal of Applied Optics, 2008, 29(supp): 83-86.
Citation: ZOU Shi-qian, ZHOU Ji. Application analysis of lidar in range measurement[J]. Journal of Applied Optics, 2008, 29(supp): 83-86.

Application analysis of lidar in range measurement

More Information
  • Corresponding author:

    ZOU Shi-qian

  • Lidar is a high-tech which combined laser technology with traditional radar technology. As lidar has the advantages of narrow beam, high measurement precision, high resolution, high anti-jamming capability, and can measure target attitude and image the target, it has been widely used in proving ground abroad. Its application prospect is analyzed based on the characteristic of lidar technology and its superiority of performance compared with traditional optical measurement equipments.
  • Related Articles

    [1]GUO Bingtao, HAN Qi, XI Jin, ZHANG Weiguo. Validation method of infrared imaging simulation based on recognition range[J]. Journal of Applied Optics, 2022, 43(4): 719-725. DOI: 10.5768/JAO202243.0404001
    [2]WANG Huilin, WU Xiongxiong, JIANG Xiaocun. Influence of detector pixel size on imaging performance of airborne optoelectronic system[J]. Journal of Applied Optics, 2022, 43(4): 583-591. DOI: 10.5768/JAO202243.0401001
    [3]Hu Xiaoli, Zhang Sanxi, Tang Minggang, Rong Xiaolong, Wu Haiying, Liu Biao. Feasibility on attitude measurement of flying target usingweak perspective projection in range[J]. Journal of Applied Optics, 2017, 38(3): 445-450. DOI: 10.5768/JAO201738.0303003
    [4]Zhang Yining, Zhang Haochun, Ma Rui, Song Naiqiu, Wei Yanqiang. Evaluation of infrared thermal imaging system detection distance in different cloud and rain conditions[J]. Journal of Applied Optics, 2016, 37(2): 288-296. DOI: 10.5768/JAO201637.0206001
    [5]Wang Su-hua, Shen Xiang-heng, Ye Lu. Indoor test model for photoelectric theodolite operating range[J]. Journal of Applied Optics, 2014, 35(5): 744-749.
    [6]ZHAO Yu, WU Ping, SUN Wen-fang. Real-time calculating system for operating distance of infrared system[J]. Journal of Applied Optics, 2014, 35(3): 515-519.
    [7]MA He, WU Ping, ZHAO Yu. An infrared detection range model based on discrete spectral atmosphere transmittance[J]. Journal of Applied Optics, 2013, 34(3): 532-536.
    [8]BAI Bin, WU Wen-hai, QU Zhi-gang, FAN Hai-zhen, WANG Qi. Operating range of laser unit for carrier landingbased on opto-electronic guidance[J]. Journal of Applied Optics, 2013, 34(1): 170-175.
    [9]LI Yan, YANG Hong-ru, WANG Xue-wu, LI Xu-dong, WU Lei, YU Bing. Design of range-gated gain-control photomultiplier[J]. Journal of Applied Optics, 2009, 30(6): 1040-1044.
    [10]HAO Ji-ping, XU Li-qun, LI Gang, HAO Rui-yun, LI Jun. Design and application of target detection range related analysis[J]. Journal of Applied Optics, 2008, 29(3): 403-407.

Catalog

    Article views (2672) PDF downloads (1637) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return