Testing of large aspheric surfaces by subaperture stitching interferometry[J]. Journal of Applied Optics, 2009, 30(2): 273-278.
Citation: Testing of large aspheric surfaces by subaperture stitching interferometry[J]. Journal of Applied Optics, 2009, 30(2): 273-278.

Testing of large aspheric surfaces by subaperture stitching interferometry

More Information
  • In order to test large aspheric surfaces without the aid of null optics, the subaperture stitching interferometry (SSI) was proposed. The theory and principle of the technique were analyzed, the optimized stitching model and effective stitching algorithm were established based on homogeneous coordinates transformation, simultaneous least-squares method and Zernike polynomials fitting. The software of SSI was designed, and the computer simulation was carried out, the prototype for testing of large asphere by SSI was designed and developed. The experiment was conducted with five subapertures for a 350mm hyperboloid. For comparison and validation, the asphere was tested by null compensation as well, the synthesized surface map is consistent with the entire surface map from the null test; and the difference of PV and RMS error between them was 0.032 and 0.004(=632.8nm), respectively.
  • Related Articles

    [1]HE Sijie, DAI Caihong, CHENG Qiutong, WU Zhifeng, LI Ling, WANG Yanfei. Influence of field of view angle and positioning error on spectral radiance measurement[J]. Journal of Applied Optics, 2023, 44(2): 386-391. DOI: 10.5768/JAO202344.0203004
    [2]LIU Hao, ZHAO Tianqi, ZHAN Chunlian, ZOU Yanxia, JIN Shangzhong. Testing technology of vacuum ultraviolet spectral radiance[J]. Journal of Applied Optics, 2022, 43(6): 1138-1144. DOI: 10.5768/JAO202243.0604013
    [3]YUAN Linguang, ZHAN Chunlian, LU Fei, FAN Jihong, LI Yan, WU Lipeng, YOU Yue. Absolute radiometric calibration technique of large aperture integrating sphere source[J]. Journal of Applied Optics, 2020, 41(6): 1236-1240. DOI: 10.5768/JAO202041.0603003
    [4]HAN Zhansuo, CAO Feng, WANG Jian’gang, LUO Beibei, QIN Yan, LIU Fang. Testing method about infrared radiation intensity of explosive used in vacuum environment[J]. Journal of Applied Optics, 2020, 41(6): 1230-1235. DOI: 10.5768/JAO202041.0603002
    [5]HE Shufang, WANG Yanfei, DAI Caihong, LIU Jinyuan, FENG Guojin. Research of temperature uniformity and size-of-source effect in infrared spectral radiance measurement[J]. Journal of Applied Optics, 2020, 41(4): 737-742. DOI: 10.5768/JAO202041.0406003
    [6]YUAN Linguang, FAN Jihong, ZHOU Xiaoguang, ZHAN Chunlian, LU Fei, LI Yan, ZHANG Boni, CHEN Juan, YOU Yue. Research on near-UV to near-IR spectroradiometer and its calibration method[J]. Journal of Applied Optics, 2019, 40(3): 478-482. DOI: 10.5768/JAO201940.0303004
    [7]Wang Xuexin, Yang hongru, Yu bing, Yan Xiaoyu, Hao Shujie, Xie Yi, Li Siwei, Wang Jiangang. Calibration and measurement method for IR target under the same solid angle[J]. Journal of Applied Optics, 2018, 39(4): 518-521. DOI: 10.5768/JAO201839.0403001
    [8]LIU Wei-feng, XIE Yong-jie, ZHAO Le-zhi. Measurement and research on sky background radiance luminance[J]. Journal of Applied Optics, 2012, 33(2): 351-354.
    [9]JU Xin-gang, NI Jin-ping. Image measurement method for flame length[J]. Journal of Applied Optics, 2006, 27(6): 524-527.
    [10]ZHAN Chun-lian, LIU Jian-ping, LI Zheng-qi, LU Fei, CHEN Chao. Research on measurement of spectral radiance luminance base on hightemperature blackbody[J]. Journal of Applied Optics, 2006, 27(supp): 71-75.

Catalog

    Article views (3556) PDF downloads (1427) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return