Chen Qingjiang, Zhang Xue. Mixed residual learning and guided filtering image dehazing algorithm[J]. Journal of Applied Optics.
Citation: Chen Qingjiang, Zhang Xue. Mixed residual learning and guided filtering image dehazing algorithm[J]. Journal of Applied Optics.

Mixed residual learning and guided filtering image dehazing algorithm

More Information
  • Received Date: June 16, 2019
  • Available Online: March 30, 2020
  • In order to solve the problem of image clarity and contrast degradation in fog scene image restoration, a single image defogging algorithm based on residual learning and guided filtering was proposed. The residual network was constructed by using foggy images and corresponding clear images. Multi-scale convolution is used to extract more detailed haze features. Taking advantage of the anisotropy of the guided filter, the image after the residual network is filtered to maintain the image edge characteristics, and a clearer fog-free image is obtained. The experimental results show that, compared with DCP algorithm, CAP algorithm, SRCNN algorithm, DehazeNet algorithm and MSCNN algorithm, On synthetic foggy images, the PSNR reaches 27.840 3/dB at the highest, the SSIM value reaches 0.979 6 at the highest, and the running time on natural foggy images reaches 0.4 s at the lowest. and the subjective evaluation and objective evaluation are better than other comparison algorithms. Proposed to fog algorithm not only to the fog effect is better, and faster, with strong practical value.
  • [1]
    TAN R T. Visibility in bad weather from a single image[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2008: 1-8.
    [2]
    HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. doi: 10.1109/TPAMI.2010.168
    [3]
    ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing,2015,24(11):3522-3533. doi: 10.1109/TIP.2015.2446191
    [4]
    刘万军, 赵庆国, 曲海成. 变差函数和形态学滤波的图像去雾算法[J]. 中国图象图形学报,2016,21(12):1610-1622. doi: 10.11834/jig.20161206

    LIU Wanjun, ZHAO Qingguo, QU Haicheng. Image defog algorithm based on variogram and morphological filter[J]. Journal of Image and Graphics,2016,21(12):1610-1622. doi: 10.11834/jig.20161206
    [5]
    李喆, 李建增, 胡永江, 等. 混合先验与加权引导滤波的图像去雾算法[J]. 中国图象图形学报,2019,24(2):170-179.

    LI Zhe, LI Jianzeng, HU Yongjiang, et al. Mixed prior and weighted guided filter image dehazing algorithm[J]. Journal of Image and Graphics,2019,24(2):170-179.
    [6]
    沈逸云, 邵雅琪, 刘春晓, 等. 结合天空检测与纹理平滑的图像去雾[J]. 中国图象图形学报,2017,22(7):897-905.

    SHEN Yiyun, SHAO Yaqi, LIU Chunxiao, et al. Integrating sky detection with texture smoothing for image defogging[J]. Journal of Image and Graphics,2017,22(7):897-905.
    [7]
    胡长胜, 詹曙, 吴从中. 基于深度特征学习的图像超分辨率重建[J]. 自动化学报,2017,43(5):814-821.

    HU Changsheng, ZHAN Shu, WU Congzhong. Image super-resolution based on deep learning features[J]. Acta Automatica Sinica,2017,43(5):814-821.
    [8]
    PARDASANI R, SHREEMALI U. Image denoising and super-resolution using residual learning of deep convolutional network[EB/OL]. [2019-00-00]. https://arxiv.org/abs/1809.08229
    [9]
    章云港, 易本顺, 吴晨玥, 等. 基于卷积神经网络的低剂量CT图像去噪方法[J]. 光学学报,2018,38(4):123-129.

    ZHANG Yungang, YI Benshun, WU Chenyue, et al. Low-dose CT image denoising method based on convolutional neural network[J]. Acta Optica Sinica,2018,38(4):123-129.
    [10]
    李倩玉, 蒋建国, 齐美彬. 基于改进深层网络的人脸识别算法[J]. 电子学报,2017,45(3):619-625. doi: 10.3969/j.issn.0372-2112.2017.03.017

    LI Qianyu, JIANG Jianguo, QI Meibin. Face recognition algorithm based on improved deep networks[J]. Acta Electronica Sinica,2017,45(3):619-625. doi: 10.3969/j.issn.0372-2112.2017.03.017
    [11]
    刘峰, 沈同圣, 马新星. 特征融合的卷积神经网络多波段舰船目标识别[J]. 光学学报,2017,37(10):240-248.

    LIU Feng, SHEN Tongsheng, MA Xinxing. Convolutional neural network based multi-band ship target recognition with feature fusion[J]. Acta Optica Sinica,2017,37(10):240-248.
    [12]
    CAI B L, XU X M, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing,2016,25(11):5187-5198. doi: 10.1109/TIP.2016.2598681
    [13]
    REN W Q, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[C]//Computer Vision–ECCV 2016. Cham: Springer International Publishing, 2016: 154-169.
    [14]
    LI C Y, GUO J C, PORIKLI F, et al. A cascaded convolutional neural network for single image dehazing[J]. IEEE Access,2018,6:24877-24887. doi: 10.1109/ACCESS.2018.2818882
    [15]
    HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]//Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 630-645.
    [16]
    ZHANG K, ZUO W, CHEN Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing,2017,26(7):3142-3155. doi: 10.1109/TIP.2017.2662206
    [17]
    廖建尚, 王立国. 两类空间信息融合的高光谱图像分类方法[J]. 激光与光电子学进展,2017,54(8):113-122.

    LIAO Jianshang, WANG Liguo. Hyperspectral image classification method based on fusion with two kinds of spatial information[J]. Laser & Optoelectronics Progress,2017,54(8):113-122.
    [18]
    DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. doi: 10.1109/TPAMI.2015.2439281
    [19]
    NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(6):713-724. doi: 10.1109/TPAMI.2003.1201821

Catalog

    Article views (767) PDF downloads (81) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return