Chen Qingjiang, Zhang Xue. Mixed residual learning and guided filtering image dehazing algorithm[J]. Journal of Applied Optics.
Citation: Chen Qingjiang, Zhang Xue. Mixed residual learning and guided filtering image dehazing algorithm[J]. Journal of Applied Optics.

Mixed residual learning and guided filtering image dehazing algorithm

More Information
  • Received Date: June 16, 2019
  • Available Online: March 30, 2020
  • In order to solve the problem of image clarity and contrast degradation in fog scene image restoration, a single image defogging algorithm based on residual learning and guided filtering was proposed. The residual network was constructed by using foggy images and corresponding clear images. Multi-scale convolution is used to extract more detailed haze features. Taking advantage of the anisotropy of the guided filter, the image after the residual network is filtered to maintain the image edge characteristics, and a clearer fog-free image is obtained. The experimental results show that, compared with DCP algorithm, CAP algorithm, SRCNN algorithm, DehazeNet algorithm and MSCNN algorithm, On synthetic foggy images, the PSNR reaches 27.840 3/dB at the highest, the SSIM value reaches 0.979 6 at the highest, and the running time on natural foggy images reaches 0.4 s at the lowest. and the subjective evaluation and objective evaluation are better than other comparison algorithms. Proposed to fog algorithm not only to the fog effect is better, and faster, with strong practical value.
  • [1]
    TAN R T. Visibility in bad weather from a single image[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2008: 1-8.
    [2]
    HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. doi: 10.1109/TPAMI.2010.168
    [3]
    ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing,2015,24(11):3522-3533. doi: 10.1109/TIP.2015.2446191
    [4]
    刘万军, 赵庆国, 曲海成. 变差函数和形态学滤波的图像去雾算法[J]. 中国图象图形学报,2016,21(12):1610-1622. doi: 10.11834/jig.20161206

    LIU Wanjun, ZHAO Qingguo, QU Haicheng. Image defog algorithm based on variogram and morphological filter[J]. Journal of Image and Graphics,2016,21(12):1610-1622. doi: 10.11834/jig.20161206
    [5]
    李喆, 李建增, 胡永江, 等. 混合先验与加权引导滤波的图像去雾算法[J]. 中国图象图形学报,2019,24(2):170-179.

    LI Zhe, LI Jianzeng, HU Yongjiang, et al. Mixed prior and weighted guided filter image dehazing algorithm[J]. Journal of Image and Graphics,2019,24(2):170-179.
    [6]
    沈逸云, 邵雅琪, 刘春晓, 等. 结合天空检测与纹理平滑的图像去雾[J]. 中国图象图形学报,2017,22(7):897-905.

    SHEN Yiyun, SHAO Yaqi, LIU Chunxiao, et al. Integrating sky detection with texture smoothing for image defogging[J]. Journal of Image and Graphics,2017,22(7):897-905.
    [7]
    胡长胜, 詹曙, 吴从中. 基于深度特征学习的图像超分辨率重建[J]. 自动化学报,2017,43(5):814-821.

    HU Changsheng, ZHAN Shu, WU Congzhong. Image super-resolution based on deep learning features[J]. Acta Automatica Sinica,2017,43(5):814-821.
    [8]
    PARDASANI R, SHREEMALI U. Image denoising and super-resolution using residual learning of deep convolutional network[EB/OL]. [2019-00-00]. https://arxiv.org/abs/1809.08229
    [9]
    章云港, 易本顺, 吴晨玥, 等. 基于卷积神经网络的低剂量CT图像去噪方法[J]. 光学学报,2018,38(4):123-129.

    ZHANG Yungang, YI Benshun, WU Chenyue, et al. Low-dose CT image denoising method based on convolutional neural network[J]. Acta Optica Sinica,2018,38(4):123-129.
    [10]
    李倩玉, 蒋建国, 齐美彬. 基于改进深层网络的人脸识别算法[J]. 电子学报,2017,45(3):619-625. doi: 10.3969/j.issn.0372-2112.2017.03.017

    LI Qianyu, JIANG Jianguo, QI Meibin. Face recognition algorithm based on improved deep networks[J]. Acta Electronica Sinica,2017,45(3):619-625. doi: 10.3969/j.issn.0372-2112.2017.03.017
    [11]
    刘峰, 沈同圣, 马新星. 特征融合的卷积神经网络多波段舰船目标识别[J]. 光学学报,2017,37(10):240-248.

    LIU Feng, SHEN Tongsheng, MA Xinxing. Convolutional neural network based multi-band ship target recognition with feature fusion[J]. Acta Optica Sinica,2017,37(10):240-248.
    [12]
    CAI B L, XU X M, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing,2016,25(11):5187-5198. doi: 10.1109/TIP.2016.2598681
    [13]
    REN W Q, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[C]//Computer Vision–ECCV 2016. Cham: Springer International Publishing, 2016: 154-169.
    [14]
    LI C Y, GUO J C, PORIKLI F, et al. A cascaded convolutional neural network for single image dehazing[J]. IEEE Access,2018,6:24877-24887. doi: 10.1109/ACCESS.2018.2818882
    [15]
    HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[C]//Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 630-645.
    [16]
    ZHANG K, ZUO W, CHEN Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing,2017,26(7):3142-3155. doi: 10.1109/TIP.2017.2662206
    [17]
    廖建尚, 王立国. 两类空间信息融合的高光谱图像分类方法[J]. 激光与光电子学进展,2017,54(8):113-122.

    LIAO Jianshang, WANG Liguo. Hyperspectral image classification method based on fusion with two kinds of spatial information[J]. Laser & Optoelectronics Progress,2017,54(8):113-122.
    [18]
    DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. doi: 10.1109/TPAMI.2015.2439281
    [19]
    NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(6):713-724. doi: 10.1109/TPAMI.2003.1201821
  • Related Articles

    [1]JIANG Han, WU Jun. Infrared image enhancement algorithm based on secondary guided filtering and its implementation on FPGA[J]. Journal of Applied Optics, 2023, 44(4): 777-785. DOI: 10.5768/JAO202344.0402002
    [2]ZHOU Zhe, SHEN Jianxin, HAN Peng, JIANG Junjia. Stereo matching algorithm based on Census transformation and guided filter[J]. Journal of Applied Optics, 2020, 41(1): 79-85. DOI: 10.5768/JAO202041.0102003
    [3]CHEN Qingjiang, ZHANG Xue. Image defogging algorithm combined with full convolution neural network[J]. Journal of Applied Optics, 2019, 40(4): 596-602. DOI: 10.5768/JAO201940.0402003
    [4]Xiao Shaorong, Zhou Weiwei. Analysis of Mie scattering spectrum based on guided filtering[J]. Journal of Applied Optics, 2017, 38(6): 923-930. DOI: 10.5768/JAO201738.0602004
    [5]Han Gang, Xu Ya-e, Shen Yang, Wang Jin, Wang Sen. Application of speckle technique in laser homing guided weapon simulation system[J]. Journal of Applied Optics, 2015, 36(3): 356-361. DOI: 10.5768/JAO201536.0301004
    [6]Cheng Xiang-ming, Deng Lin-hua, Liu Guang-qian. Calculation of thermal deformation for auto guide telescope of NVST[J]. Journal of Applied Optics, 2014, 35(5): 862-867.
    [7]ZHANG Jun, GUO Dan, CHEN Zhe, CAI Chang. Side backlighting light guide plate of mobile phone[J]. Journal of Applied Optics, 2011, 32(4): 607-612.
    [8]WANG Man-yu, ZHANG Kun, LIU Jian, WANG Hui-lin, ZHANG Wei-guo. Direct targeting and engagement with airborne satellite guided weapon[J]. Journal of Applied Optics, 2011, 32(4): 598-601.
    [9]HUANG Chong, JIANG Yan-sen, SHEN Yi, WU Yong-jun. Design of scattering netted dots on light guide plate of edge-lighting LED backlight[J]. Journal of Applied Optics, 2008, 29(5): 689-692.
    [10]YUAN Wen, NIE Yi-you, SANG Ming-huang, LIU Guo-dong. Investigation of electro-optic modulator based on guide mode resonance[J]. Journal of Applied Optics, 2008, 29(4): 522-525.
  • Cited by

    Periodical cited type(9)

    1. 要丽娟,郭银芳,杨思贤. 基于深度学习网络的光通信系统非法入侵行为识别研究. 激光杂志. 2023(12): 173-177 .
    2. 陈晓娟,黄文卓,孙鸿辉,徐梦,王圣达. 基于隶属度函数的电力光纤线路健康度评估. 激光杂志. 2022(03): 128-133 .
    3. 赵贺,张鹏,杨志群,欧阳举,田东升,刘壮,王大帅,姜会林. 多调制格式兼容的空间激光高速通信调制仿真与实验研究. 中国激光. 2022(07): 113-123 .
    4. 张海燕,唐学明,杨洪涛. 电磁干扰环境下无人机激光雷达的通信性能研究. 激光杂志. 2022(09): 139-143 .
    5. 万青. 基于数据挖掘的光纤通信网络异常数据检测. 中国新通信. 2022(18): 4-6 .
    6. 刘海梅,李军,唐利. 基于传输节点模型的光通信网络数据稳定传输方法. 激光杂志. 2021(08): 131-134 .
    7. 陈斐,赵强. 基于窄带PLC自由通信的信道噪声消除算法. 自动化技术与应用. 2021(09): 61-65 .
    8. 李俊杰,杨世康,王振龙. 基于多因素的紫外光通信系统性能分析. 激光杂志. 2020(08): 168-171 .
    9. 马莉莉,刘江平. 基于数据挖掘的光纤通信网络异常数据检测研究. 应用光学. 2020(06): 1305-1310 . 本站查看

    Other cited types(2)

Catalog

    Article views (760) PDF downloads (75) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return