Hu Tie-li, Ma Shi-bang, Guo Yu, Xin Zhou, Li Si-wei, Xie Qi, Liu Rui-xing, Fan Ji-hong, Zhang Mei, Xie Yi, Liu Jun-ning. Spatial NETD measurement of thermal imager[J]. Journal of Applied Optics, 2014, 35(6): 1094-1098.
Citation: Hu Tie-li, Ma Shi-bang, Guo Yu, Xin Zhou, Li Si-wei, Xie Qi, Liu Rui-xing, Fan Ji-hong, Zhang Mei, Xie Yi, Liu Jun-ning. Spatial NETD measurement of thermal imager[J]. Journal of Applied Optics, 2014, 35(6): 1094-1098.

Spatial NETD measurement of thermal imager

More Information
  • The spatial noise on staring array thermal imager restricts its capability in detecting, distinguishing and tracking the long distance targets. To solve the problem in measuring the thermal imager spatial noise, its measuring theory was analyzed and the mathematical model for measuring the spatial noise based on signal transfer function (SiTF) was presented. After removing the temporal noise equivalent temperature difference (NETD) from the noise of a certain group or district or the whole pixels in thermal imager, the spatial NETD model was calculated through analyzing statistically the noise of those pixels. In measuring the SiTF and spatial NETD of cooled MCT320256 thermal imager, when the temperature of the background blackbody is 5 ℃, the SiTF of central district in field of view(FOV) is 27.29 mV/℃, and the spatial NETD is 0.128 ℃. When the temperature of the background blackbody is 20 ℃, the SiTF of central district in FOV is 29.03 mV/℃, and the spatial NETD is 0.121 ℃。The measuring results show that the measuring method can evaluate the influence of spatial noise on the performance of thermal imager.
  • [1]Holst G C. Testing and evaluation of infrared imaging system [M]. US: JCD Publishing and SPIE,2008.
    [2]Biberman L M. Electro-optical imaging: system performance and modeling [M]. US: SPIE and Ontar Corporation, 2000.
    [3]Night vision imaging system performance model[M]. US: U.S. army night vision and electronic sensorsdirectorate, 2001.
    [4]Hradaynath R. Selected paper on night vision technology [M]. US: SPIE Press, 2001.
    [5]Llord J M. Thermal imaging systems [M]. Beijing:National Defense Industry Press,1981.
    劳埃德. J. M. 热成像系统[M]. 北京:国防工业出版社,1981.
    [6]Hu Tieli, Feng Zhuoxiang,Li Xudong,et al. Modeling and measurement of thermal imager temporal noise [J]. Infrared and Laser Engineering, 2008,37 (Sup.):519-522.
    胡铁力,冯卓祥,李旭东,等. 红外热像仪时间噪声测量技术研究 [J]. 红外与激光过程,2008,37(增刊):519-522.
    [7] Hu Tieli, Han Jun,Zheng Kezhe,et al. Calibration facility of infrared imaging systems [J]. Journal of Applied Optics, 2006,27(Sup.):28-32.
    胡铁力,韩军,郑克哲,等. 红外热像仪测试系统校准 [J]. 应用光学,2006,27 (增刊):28-32.
    [8] Hu Tieli, Li Xudong,Fu Jianming,et al. Double-blackbody unit for measuring parameters of infrared cameras [J]. Journal of Applied Optics, 2006,27(3):246-249.
    胡铁力,李旭东,付建明,等. 红外热像仪参数的双黑体测量装置 [J]. 应用光学,2006,27(3):246-249.
    [9]Kobayashi M,Wada H. 480×8 Hybrid HgCdTe infrared focal plane arrays for high-definition television format [J]. Optical Engineering, 2002, 41(8): 1876-1885.
    [10]Nesher O, Pivnik I. High resolution 1 280×1 024, 15 μm pitch compact InSb detector with on-chip ADC [J]. SPIE, 2008, 7298 :72983k1-72983k9.
  • Related Articles

    [1]ZHENG Fengzhu, NING Fei, WANG Huilin, WU Xiongxiong, WANG Guan, ZHAO Zhicao, ZHOU Yun, WANG Le. Qualitative analysis of reliability on servo stabilization platform of electro-optical system[J]. Journal of Applied Optics, 2022, 43(5): 853-858. DOI: 10.5768/JAO202243.0501004
    [2]ZHANG Yaqiong, GUO Jiandu, XU Yang, HAO Xiaojian, CHEN Guanghui, ZHOU Jing, ZHU Jingjing. High-precision stability control of scanning platform of fast circumferential scanning detection system[J]. Journal of Applied Optics, 2022, 43(3): 375-385. DOI: 10.5768/JAO202243.0301001
    [3]Yang Xiaoqiang, Qi Yuan, Shi Leilei, Hu Bo, Cheng Gang. Structure-control co-simulation of electro-optic stabilization system using Matlab and ADAMS[J]. Journal of Applied Optics, 2016, 37(5): 657-662. DOI: 10.5768/JAO201637.0501004
    [4]Xue Yuanyuan, Chen Wenjian, Kang Tingting, Chen Ying, Zhang Xiajiang, Yang Yuancheng. Inertial compensation method for LOS drift of gyroscope stabilization platform[J]. Journal of Applied Optics, 2016, 37(2): 177-182. DOI: 10.5768/JAO201637.0201005
    [5]XU Fei-fei, LIU Sha, YIN Ming-dong, JI Ming. Performance comparison and analysis of coarse and fine combinedstabilization control system based on mirror compensation[J]. Journal of Applied Optics, 2013, 34(1): 15-20.
    [6]LI Hong-guang, HAN Wei, SONG Ya-min, TAN Ming-dong, GUO Xin-sheng, LEI Hai-li. Active disturbance rejection servo system forvehicle photoelectric stabilization and tracking platform[J]. Journal of Applied Optics, 2012, 33(6): 1024-1029.
    [7]XU Fei-fei, JI Ming, XIE Jing, NIU Jing, GAO Yu, XU Qing-qing. Application of FSM in high accuracy line-of-sight stabilization system[J]. Journal of Applied Optics, 2012, 33(1): 9-13.
    [8]HONG Hua-jie, WANG Xue-wu, WENG Gan-fei. Mirror stabilization in electro-optical reconnaissance system[J]. Journal of Applied Optics, 2011, 32(4): 591-598.
    [9]ZHU Hua-zheng, FAN Da-peng, MA Dong-xi, ZHANG Wen-bo. Study on LOS stabilization accuracy of optoelectronic imaging system on moving carrier[J]. Journal of Applied Optics, 2009, 30(4): 537-541.
    [10]LI Yan, FAN Da-peng. Kinematics analysis of multi-gimbal structure for stabilization and tracking of LOS[J]. Journal of Applied Optics, 2008, 29(1): 18-22.

Catalog

    Article views (2070) PDF downloads (211) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return