Citation: | Li Hai-bo, Du Ya-wei, Zhang Qing-hua, Wei Yao-wei. Laser conditioning effect of HfO2/SiO2 film[J]. Journal of Applied Optics, 2014, 35(5): 902-907. |
[1]Feit M D, Rubenchik A M, Kozlowski M R, et al. Extrapolation of damage test data to predict performance of large-area NIF optics at 355nm[J]. SPIE, 1998, 3578: 226-234.
[2] Hue J, Génin F Y, Maricle S M, et al. Towards predicting the laser damage threshold of large-area optics[J]. SPIE, 1997, 2966: 451-462. [3]Combis P, Bonneau F, Daval G, et al. Laser-induced damage simulations of absorbing materials under pulsed IR irradiation[J]. SPIE, 2000, 3902: 317-323. [4]Zaitsu S, Motokoshi S, Jitsuno T, et al. Laser-induced damage of optical coatings grown with surface chemical reaction[J]. SPIE, 1999, 3492:204-211. [5]Runkel M J, Williams W H, De Yoreo J J. Predicting bulk damage in NIF triple harmonic generators[J]. SPIE, 1998, 3578:322-335. [6]Staggs M C, Balooch M, Kozlowski M R, et al. In-situ atomicforce microscopy of lasercondition and laser damage HfO2/SiO2 dielectric mirror coatings[J]. SPIE, 1992, 1624:375-385. [7]Bercegol H. What is laser conditioning? A review focused on dielectric multilayer[J]. SPIE, 1998, 3578: 421-427. [8]Allen S D, Porteus J O, Faith W N. Infrared laser induced desorption of H2O and hydrocarbons from optical surface[J].App.Phys.Lett., 1982, 41 (5):416-418. [9]Schildbach M, Chase L L, Hamza A V. Investigation of neutral atom and ion emission during laser conditioning of multilayer HfO2-SiO2 coatings[J]. SPIE, 1990, 1441:287-293. [10]Fornier A, Cordillot C, Ausserre D, et al. Laser conditioning of optical coatings: some issues in the characterization by atomic force microscopy[J]. SPIE, 1994, 2114:355-365. [11]Shan Yongguang, Liu Xiaofeng, He Hongbo, et al. Research progress of nodular defect in optical coatings[J]. High Power Laser and Particle Beams, 2011(06): 1421-1429. 单永光,刘晓凤,贺洪波,等。光学薄膜中节瘤缺陷研究进展[J].强激光与离子束,2011(06):1421-1429. [12]Wei Chaoyang, He Hongbo, Shao Jianda, et al. The mechanism of defect absorption induced laser damage[J]. Acta Optica Sinica, 2008, 28(4):809-812. 魏朝阳,贺洪波,邵建达, 等。吸收杂质热辐射诱导光学薄膜破坏的热力机制[J].光学学报, 2008, 28(4):809-812. [13]Hu Haiyang. Research on optical thin film coupled with damage and laser thermal[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, 2004 胡海洋.光学薄膜强激光热力耦合损伤研究[D].上海:中国科学院上海光学精密机械研究所, 2004. [14]Wu Z L, Fan Z X, Schaer D. In-situ investigation of laser conditioning of optical coatings[J]. SPIE, 1992, 1642:362-374. [15]Papandrew A B, Stolz C J, Wu Z L, et al. Laser conditioning characterization and damage threshold prediction of hafnia/silica multilayer mirrors by photothermal microscopy[J].SPIE, 2001,4347:53-61. [16]Dijon J, Poulingue M, Hue J. Thermomechanical model of mirror laser damage at 1.06 μm: I. nodule ejection[J]. SPIE, 1999, 3578:387-397. [17]Taniguchi J, Lebarron N E, Howe J, et, al. Functional damage threshold of hafnia/silica coating designs for the NIF laser[J]. SPIE, 2000, 4347:4347-1-9. [18]Wolfe J, Qiu R, Stolz C, et al. Laser damage resistant pits in dielectric coatings created by femtosecond laser machining[J]. SPIE, 2009, 7504:750405-1-8. |
[1] | ZHENG Fengzhu, NING Fei, WANG Huilin, WU Xiongxiong, WANG Guan, ZHAO Zhicao, ZHOU Yun, WANG Le. Qualitative analysis of reliability on servo stabilization platform of electro-optical system[J]. Journal of Applied Optics, 2022, 43(5): 853-858. DOI: 10.5768/JAO202243.0501004 |
[2] | ZHANG Yaqiong, GUO Jiandu, XU Yang, HAO Xiaojian, CHEN Guanghui, ZHOU Jing, ZHU Jingjing. High-precision stability control of scanning platform of fast circumferential scanning detection system[J]. Journal of Applied Optics, 2022, 43(3): 375-385. DOI: 10.5768/JAO202243.0301001 |
[3] | Yang Xiaoqiang, Qi Yuan, Shi Leilei, Hu Bo, Cheng Gang. Structure-control co-simulation of electro-optic stabilization system using Matlab and ADAMS[J]. Journal of Applied Optics, 2016, 37(5): 657-662. DOI: 10.5768/JAO201637.0501004 |
[4] | Xue Yuanyuan, Chen Wenjian, Kang Tingting, Chen Ying, Zhang Xiajiang, Yang Yuancheng. Inertial compensation method for LOS drift of gyroscope stabilization platform[J]. Journal of Applied Optics, 2016, 37(2): 177-182. DOI: 10.5768/JAO201637.0201005 |
[5] | XU Fei-fei, LIU Sha, YIN Ming-dong, JI Ming. Performance comparison and analysis of coarse and fine combinedstabilization control system based on mirror compensation[J]. Journal of Applied Optics, 2013, 34(1): 15-20. |
[6] | LI Hong-guang, HAN Wei, SONG Ya-min, TAN Ming-dong, GUO Xin-sheng, LEI Hai-li. Active disturbance rejection servo system forvehicle photoelectric stabilization and tracking platform[J]. Journal of Applied Optics, 2012, 33(6): 1024-1029. |
[7] | XU Fei-fei, JI Ming, XIE Jing, NIU Jing, GAO Yu, XU Qing-qing. Application of FSM in high accuracy line-of-sight stabilization system[J]. Journal of Applied Optics, 2012, 33(1): 9-13. |
[8] | HONG Hua-jie, WANG Xue-wu, WENG Gan-fei. Mirror stabilization in electro-optical reconnaissance system[J]. Journal of Applied Optics, 2011, 32(4): 591-598. |
[9] | ZHU Hua-zheng, FAN Da-peng, MA Dong-xi, ZHANG Wen-bo. Study on LOS stabilization accuracy of optoelectronic imaging system on moving carrier[J]. Journal of Applied Optics, 2009, 30(4): 537-541. |
[10] | LI Yan, FAN Da-peng. Kinematics analysis of multi-gimbal structure for stabilization and tracking of LOS[J]. Journal of Applied Optics, 2008, 29(1): 18-22. |