Zhu Tong-jing, Zhou Ping, Liu Xin-ran, Yuan Jun-jie. Crucial algorithms for structural light 3D measurement system calibration[J]. Journal of Applied Optics, 2014, 35(5): 848-852.
Citation: Zhu Tong-jing, Zhou Ping, Liu Xin-ran, Yuan Jun-jie. Crucial algorithms for structural light 3D measurement system calibration[J]. Journal of Applied Optics, 2014, 35(5): 848-852.

Crucial algorithms for structural light 3D measurement system calibration

More Information
  • System parameter calibration is crucial to structure light three-dimension measurement system. The calibration error is mainly due to the detection accuracy of the characteristic circular center of calibration board and the gamma distortion of the projector and camera. An accurate circular center detection method and a gamma pre-calibration method were proposed to improve calibration accuracy. The pixel edge detection with Sobel operator and subpixel edge detection with orthogonal Fourier-Mellin moments (OFMM) operator were used to detect the circular edge accurately, moreover, the circular center was detected by ellipse fitting method. The gamma nonlinear distortion model was analyzed to obtain the system gamma value, whose reciprocal was used to modify the ideal sinusoidal fringe pattern as its exponent. The experimental results show the effectiveness of the methods. The calibration accuracy increases by a factor of 3.5 in X direction and 5 in Y direction compared with that without these methods.
  • [1]Xu Qinghong, Zhong Yuexian. System calibration technique of profilometry by projected grating[J]. Optical Technique, 2000, 26(2): 126-129.
    许庆红, 钟约先. 光栅投影轮廓测量的系统标定技术[J]. 光学技术, 2000, 26(2): 126-129.
    [2]An Dong, Da Feipeng, Gai Shaoyan, et al. New system calibration method based on fringe projection profilometry [J]. Journal of Applied Optics, 2014, 35(1): 81-84.
    安东, 达飞鹏,盖绍彦,等. 新的基于条纹投影轮廓测量的系统标定方法[J]. 应用光学, 2014, 35(1): 81-84.
    [3]Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Opt. Laser Eng. ,2010,48:149-158 .
    [4]Zhang Hu, Da Feipeng, Xing Dekui. Algorithm of centre location of ellipse in optical measurement[J].Journal of Applied Optics, 2008, 29(6): 905-911.
    张虎, 达飞鹏, 邢德奎. 光学测量中椭圆圆心定位算法研究 [J]. 应用光学, 2008, 29(6): 905-911.
    [5]Tabatbaai A J, Mitchell O R. Edge location to subpixel values in digital imagery[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1984 (2): 188-201.
    [6]Lyvers E P, Mitchell O R, Akey M L, et al. Subpixel measurements using a moment-based edge operator[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1989, 11(12): 1293-1309.
    [7]Ghosal S, Mehrotra R. Orthogonal moment operators for subpixel edge detection[J]. Pattern recognition, 1993, 26(2): 295-306.
    [8] Bin T J, Lei A, Jiwen C, et al. Subpixel edge location based on orthogonal Fourier-Mellin moments[J]. Image and Vision Computing, 2008, 26(4): 563-569.
    [9]Qu Yingdong, Cui Chengsong, Chen Shanben, et al. A fast subpixel edge measurement method based on Sobel-Zernike moment operator[J]. Opto-Electronic Engineering, 2004, 30(5): 59-61.
    曲迎东, 崔成松, 陈善本, 等. 利用 Sobel-Zernike 矩算子白勺快速亚像素边缘检测方法[J]. 光电工程, 2004, 30(5): 59-61.
    [10]Zhang S, Huang P S. Phase error compensation for a 3-D shape measurement system based on the phase-shifting method[J]. Optical Engineering, 2007, 46(6): 063601063601-9.
    [11]Chen X, Xi J, Jin Y. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase-shift light projection[J]. Optical Engineering, 2008, 47(11): 113601-113601-9.
    [12]Liu K, Wang Y, Lau D L, et al. Gamma model and its analysis for phase measuring profilometry [J]. JOSA A, 2010, 27(3): 553-562.
    [13]Hoang T, Pan B, Nguyen D, et al. Generic gamma correction for accuracy enhancement in fringe-projection profilometry [J]. Optics Letters, 2010, 35(12): 1992-1994.
    [14]Li Z, Li Y. Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry [J]. Optics Letters, 2011, 36(2): 154-156.
    [15]Zhang X, Zhu L, Li Y, et al. Generic non-sinusoidal fringe model and gamma calibration in phase measuring profilometry [J]. JOSA A, 2012, 29(6): 1047-1058.
  • Cited by

    Periodical cited type(2)

    1. 赵志草,吴辉,郑凤翥,张文博,王冠. 多失效模式光电系统可靠性建模分析方法. 应用光学. 2022(04): 635-640 . 本站查看
    2. 杨曈,王凡,倪晋平,曾辉. 基于蒙特卡罗法的水下激光光幕探测性能研究. 应用光学. 2019(03): 454-460 . 本站查看

    Other cited types(0)

Catalog

    Article views (1794) PDF downloads (188) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return