ZHANG Heng, FENG De-jun, ZHU Jun, WANG Xu. Relationship between information content and spatial resolution of remote sensing images[J]. Journal of Applied Optics, 2014, 35(3): 409-413.
Citation: ZHANG Heng, FENG De-jun, ZHU Jun, WANG Xu. Relationship between information content and spatial resolution of remote sensing images[J]. Journal of Applied Optics, 2014, 35(3): 409-413.

Relationship between information content and spatial resolution of remote sensing images

More Information
  • Currently, most studies focus on the calculation model of the information content, rarely involve the quantitative relation between spatial resolution and information content. In order to quantitatively evaluate different spatial resolution remote sensing images, this paper was based on the theory of information and fuzzy mathematics and the information entropy was used as the criterion. Through calculating the information content of panchromatic and multispectral image at different levels, a mathematical simulation of the relationship between information content and spatial resolution was provided. The results show that, as the spatial resolution of the image reduces, the amount of information exponentially reduces. Doubling the spatial resolution, the image information content increases 3 to 5 times.
  • [1]SHANNON C E. A mathematical theory of communication [J]. The Bell System Technical Journal, 1948, 27(3/4): 379-423, 623-656.
    [2]SUKHOV V I. Information capacity of a map entropy [J]. Geodesy and Aero Photography, 1967, 10(4): 212-215.
    [3]Sukhov V I. Application of information theory in generalization of map contents [J]. International Yearbook of Cartography, 1970, 10(1): 41-47.
    [4]NEUMANN J. The topological information content of a map: an attempt at a rehabilitation of information theory in cartography [J]. Cartographica, 1994, 31: 26-34.
    [5]LI Zhi-lin. Quantitative measures for spatial information of maps [J]. International Journal of Geographical Information Science, 2002, 16(7): 699-709.
    [6]林宗坚, 张永红. 遥感与地理信息系统数据的信息量及不确定性[J]. 武汉大学学报:信息科学版, 2006,31(7): 569-572.
    LIN Zong-jian, ZHANG Yong-hong. Measurement of information and uncertainty of remote sensing and GIS data[J]. Geomatics and information science of Wuhan University, 2006, 31(7): 569-572. (in Chinese with an English abstract)
    [7]王占宏. 遥感影像信息量及质量度量模型的研究[D]. 武汉: 武汉大学, 2004.
    WANG Zhan-hong. A research on the metric model for remote sensing entropy and quality[D].Wuhan: Wuhan University, 2004. (in Chinese)
    [8]郑学芬. 遥感影像的不确定性及信息量的计算方法研究[D]. 青岛: 山东科技大学, 2006.
    ZHENG Xue-fen. Study of uncertainty and commutating Methods of information quantity of remote sensing image[D]. Qingdao: Shandong University of Science and Technology, 2006. (in Chinese)
    [9]郑学芬, 林宗坚, 范丽, 等. 遥感影像信息量的计算方法研究[J]. 山东科技大学学报:自然科学版, 2008, 27(1): 80-83.
    ZHENG Xue-fen, LIN Zong-jian, FAN Li, et al. Research on methods for computing the volume of information of remote sensing image[J]. Journal-Shandong University of Science and Technology Natural Science, 2008, 27(1): 80-83. (in Chinese with an English abstract)
    [10]卢健, 彭鳗, 卢昕. 遥感图像相关性及其熵计算[J]. 武汉大学学报:信息科学版, 2006,31(6): 476-480.
    LU Jian, PENG Man, LU Xin. Relativity of remote sensing images and entropy calculation[J]. Geomatics and Information Science of Wuhan University, 2006,31(6): 476-480. (in Chinese with an English abstract)
    [11]承继成, 郭华东, 史文中, 等. 遥感数据的不确定性问题[M]. 北京: 科学出版社, 2004.
    CHENG Ji-cheng , GUO Hua-dong, SHI Wen-zhong, et al. Data uncertainties in remote sensing[M] Beijing: Science Press, 2004. (in Chinese)
  • Related Articles

    [1]WANG Xinqiang, QIN Shan, SUN Xiaobing, XIONG Wei, YE Song, WANG Fangyuan, TONG Xuanke. Rapid measurement of sludge sedimentation ratio based on polarization information[J]. Journal of Applied Optics, 2025, 46(1): 121-128. DOI: 10.5768/JAO202546.0103001
    [2]WEI Wei, CHEN Fen, ZHANG Huabo, LUO Yingguo, ZHANG Peng, PENG Zongju. Light field images super-resolution based on sub-pixel and gradient guide[J]. Journal of Applied Optics, 2024, 45(5): 956-965. DOI: 10.5768/JAO202445.0502003
    [3]WANG Dingrui, DENG Xiao, ZHANG Jun, LU Xinshuo, DU Chao, ZHANG Li, ZHANG Lin. High spatial resolution distributed optical fiber temperature measurement system for ice cover profile[J]. Journal of Applied Optics, 2021, 42(5): 941-948. DOI: 10.5768/JAO202142.0508003
    [4]YANG Shuguang. Perceptually enhanced super-resolution reconstruction model based on deep back projection[J]. Journal of Applied Optics, 2021, 42(4): 691-697, 716. DOI: 10.5768/JAO202142.0402009
    [5]SUN Shiwei, LIU Jinhu, MA Wenjun, WANG Xiaopeng. Adaptive optimization defogging algorithm based on linear model[J]. Journal of Applied Optics, 2020, 41(1): 114-119. DOI: 10.5768/JAO202041.0102008
    [6]Shen Yong, Guo Tiantai, Kong Ming, Zhao Jun, Shen Haidong. Application of D-ELM in quantitative analysis of FTIR spectrum of mine gas[J]. Journal of Applied Optics, 2016, 37(5): 725-729. DOI: 10.5768/JAO201637.0503003
    [7]WANG Jiang-tao, CHEN Xiang-ning. Characteristics of ferroelectric liquid crystal optical addressed spatial light modulator[J]. Journal of Applied Optics, 2012, 33(1): 57-63.
    [8]LI Yong, LU Ji-dong, LIN Zhao-xiang, XIE Cheng-li, LI Jie, LI Peng-yan. Quantitative analysis of lead in soil by laser-induced breakdown spectroscopy[J]. Journal of Applied Optics, 2008, 29(5): 789-792.
    [9]PENG Fu-lun, FENG Zhuo-xiang. Effect of micro-scanning on spatial resolution[J]. Journal of Applied Optics, 2006, 27(5): 394-399.
    [10]WU Lei, YANG Hong-ru, LI Xu-dong. Comparison between geometrical model and Debye model for large bubble scattering[J]. Journal of Applied Optics, 2006, 27(supp): 97-101.

Catalog

    Article views (1868) PDF downloads (219) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return