Citation: | SUN Hao-ze, CHANG Tian-qing, CHEN Jun-wei, XIE Jie. Integral sliding mode control for armored vehicles steady sighting system based on extended state observer[J]. Journal of Applied Optics, 2014, 35(2): 198-204. |
[1]朱竞夫. 现代坦克火控系统[M]. 北京: 国防工业出版社, 2003. ZHU Jing-fu. Modern tank fire control system[M]. Beijing: National Defense Industry Press, 2003.(in Chinese) [2]姬伟, 李奇, 杨海峰, 等. 精密光电跟踪转台的设计与伺服控制[J]. 光电工程, 2006,33 (3):11-16. JI Wei, LI Qi, YANG Hai-feng, et al. Design and servo control for precision opto-electronic tracking turntable [J]. Opto-Electronic Engineering, 2006,33(3):11-16. (in Chinese with an English abstract) [3]范华春, 曹晖, 郭金龙,等. 新型火控观瞄系统的设计与实现[J]. 火力与指挥控制, 2010,35(11):177-180. FAN Hua-chun, CAO Hui, GUO Jin-long, et al. The design and realization of a new sighting system for FCS[J]. Fire Control & Command Control, 2010,35(11) :177-180. (in Chinese with an English abstract) [4]KRISHNAMOORTY J A R , MARATHE R, SULE V R. H∞ control low for line-of-sight stabilization for mobile land vehicle[J].Optical Engineering, 2002, 41(11): 2935-2944. [5]LI X R,JILLKOV V P. Survey of maneuvering target tracking. part I: dynamic models[J].IEEE Transactions Aerospace and Electronic Systems,2003,9(4):1333-1364. [6]朱海荣, 李奇, 顾菊萍, 等. 扰动补偿的陀螺稳定平台单神经元自适应PI控制[J]. 电机与控制学报, 2012, 16(3): 65-70. ZHU Hai-rong, LI Qi, GU Ju-ping, et al. Single neuron adaptive PI control of the gyro-stabilized platform based on disturbance compensation[J]. Electric Machines and Control, 2012, 16(3): 65-70. (in Chinese with an English abstract) [7] 姚琼荟,黄继起,吴汗松.变结构控制系统[M].重庆:重庆大学出版社,1997. YAO Qiong-hui, HUANG Ji-qi, WU Han-song. Variable structure control system[M]. Chongqing: Chongqing University Press, 1997. (in Chinese) [8]韩京清. 自抗扰控制器及其应用[[J]. 控制与决策,1998, 13(1): 19-23. HAN Jing-qing. Auto-disturbances-rejection controller and it-s application[J]. Control and Decision, 1998, 13(1): 19-23. (in Chinese with an English abstract) [9]王礼鹏, 张化光,刘秀翀, 等. 基于扩张状态观测器的SPMSM调速系统的滑模变结构反步控制[J].控制与决策, 2011, 26(4): 553-557. WANG Li-peng, ZHANG Hua-guang, LIU Xiu-chong ,et al. Backstepping controller based on sliding mode variable structure for speed control of SPMSM with extended state observer[J]. Control and Decision, 2011, 26(4):553-557.(in Chinese with an English abstract) [10]朱华征, 范大鹏, 马东玺, 等. 动载体光电成像系统视轴稳定精度研究[J]. 应用光学, 2009, 30(4): 537-541. ZHU Hua-zheng, FAN Da-peng, MA Dong-xi, et al. Study on LOS stabilization accuracy of optoelectronic imaging system on moving carrier[J]. Journal of Applied Optics, 2009, 30(4): 537-541. (in Chinese with an English abstract) [11]李拥军, 杨文淑, 范永坤, 等. 高精度转台摩擦力矩补偿控制器设计与仿真[J]. 光电工程, 2008, 35(12): 126-130. LI Yong-jun, YANG Wen-shu, FAN Yong-kun, et al. Controller design and simulation for friction moment compensation on high-precision turntable[J]. Opto-Electronic Engineering, 2008, 35(12): 126-130. (in Chinese with an English abstract) [12]管成. 非线性系统的滑模自适应控制及其在电液控制系统中的应用[D]. 杭州:浙江大学, 2005. GUAN Cheng. Sliding mode adaptive control of none linear system and application to electro-hydraulic control system[D]. Hangzhou: Zhejiang University, 2005. (in Chinese) [13]KIM B K, CHUNG W K, OHB K. Design and performance tuning of sliding-mode controller for high-speed and high-accuracy positioning systems in disturbance observer framework [J]. IEEE Transaction on Industry Electronics, 2009, 56(10): 3798-3809. [14]李生权, 季宏丽,裘进浩. 基于压电智能结构状态估计误差补偿的自抗扰振动控制[J]. 机械工程学报, 2012, 48(5):34-42. LI Sheng-quan, JI Hong-li, QIU Jin-hao. Active disturbance rejection controller based on state estimation error compensation for smart piezoelectric structure[J]. Chinese Journal of Mechanical Engineering, 2012, 48(5):34-42. (in Chinese with an English abstract) [15]GAO Zhi-qiang. Scaling and bandwidth-parameterization based controller turning[C]. New York,USA:Proceedings of American Control Conference, 2003:4989-4996. [16]邱晓波, 窦丽华, 单东升, 等. 光电跟踪系统自抗扰伺服控制器的设计[J]. 光学精密工程, 2010, 18(1): 220-226. QIU Xiao-bo, DOU Li-hua, SHAN Dong-sheng, et al. Design of active disturbance rejection controller for electro-optical tracking servo system[J]. Optics and Precision Engineering, 2010, 18(1): 220-226. (in Chinese with an English abstract) |
[1] | PENG Huaxing, YAN Baojun, LIU Shulin, ZHANG Binting, WEI Wenlu. Graphical offline analysis software of electron multiplier pulse signals[J]. Journal of Applied Optics, 2022, 43(6): 1107-1116. DOI: 10.5768/JAO202243.0604009 |
[2] | ZHU Jiali, ZHANG Ping, LI Gang, WEI Xiangyi, FEI Chengbo, GAN Jie, YUAN Yufen, JI Yaping. Stray light analysis of low-level-light optical system with LightTools software[J]. Journal of Applied Optics, 2022, 43(6): 1061-1065. DOI: 10.5768/JAO202243.0604004 |
[3] | HUANG Zhanhua, LIU Kun, WANG Min, GUO Jinghui. Design of real-time control software for laser target simulation system based on RTX64[J]. Journal of Applied Optics, 2019, 40(2): 186-192. DOI: 10.5768/JAO201940.0201002 |
[4] | Cui En-kun, Zhang Bao, Hong Yong-feng. Design of initial structure of infrared zoom optical system with PW solution[J]. Journal of Applied Optics, 2014, 35(4): 586-591. |
[5] | YANG Zhou, YANG Hui-ming, DING Gui-lin. An ultra-thin eight-mega-pixel mobile phone lens[J]. Journal of Applied Optics, 2013, 34(3): 413-419. |
[6] | JIANG Guang-wen, CHAO Zhi-chao, JIANG He-ping, FU Si-hua. Synchronous image acquisition and processing system of multiple cameras based on source trigger and software control[J]. Journal of Applied Optics, 2009, 30(5): 756-760. |
[7] | PENG Fu-lun, CAO Hui, YAN Ning, JIANG Xu, XU Jiao-jie. Software for correcting gyro drift error in inertial stabilization system[J]. Journal of Applied Optics, 2009, 30(1): 34-37. |
[8] | YAO Duo-shun, MEI Dan-yang. Link and data exchange between optical design software OCAD and other optical design softwares[J]. Journal of Applied Optics, 2006, 27(3): 198-202. |
[9] | HAO Dian-zhong, WU Fu-quan, LI Guo-hua, KONG Wei-jin. The Design of Thin-Film Polarizing Beamsplitter Based on TFCALC Software[J]. Journal of Applied Optics, 2005, 26(1): 42-45. |
[10] | YAO Duo-shun, LIANG Hong-jun. An OCAD Optical Design Software Package for Automatic Drawing[J]. Journal of Applied Optics, 2004, 25(2): 28-35. |