DONG Changji, ZHANG Weihong, HUANG Yizhao, LI Xujin, WANG Hongyuan, HU Haofeng. Underwater polarization imaging method based on active illumination modulation[J]. Journal of Applied Optics, 2024, 45(6): 1189-1196. DOI: 10.5768/JAO202445.0602003
Citation: DONG Changji, ZHANG Weihong, HUANG Yizhao, LI Xujin, WANG Hongyuan, HU Haofeng. Underwater polarization imaging method based on active illumination modulation[J]. Journal of Applied Optics, 2024, 45(6): 1189-1196. DOI: 10.5768/JAO202445.0602003

Underwater polarization imaging method based on active illumination modulation

More Information
  • Received Date: November 21, 2023
  • Revised Date: January 07, 2024
  • Available Online: November 17, 2024
  • The optical attenuation and absorption effects in turbid water often lead to a significant decrease in imaging quality, which has an undeniable impact on many applications based on underwater visual images. A polarization imaging method for underwater scattering suppression was proposed, the crucial idea of which was to maximize the degree of polarization of backscattered light through active illumination modulation, thus the backscattered light was suppressed to the greatest extent. Through the measurement of the Mueller matrix of the target scene, the given Stokes vector of the backscattered light, the determination of the Stokes vector of the incident active illumination, and the calculation of the polarization feature vectors, the images in the scattering medium were finally recovered by combining above information. Experimental results show that the method performs well in dealing with the imaging problems under turbid water. Compared with other methods, it significantly improves image quality and provides a powerful solution for imaging applications in underwater environments. The uniqueness of this method lies in its active illumination modulation technique, which achieves the modulation of the polarization characteristics of the backscattered light through active illumination control, thereby effectively reducing the imaging degradation caused by scattering, and bringing new research ideas to the field of underwater polarization imaging.

  • [1]
    JAFFE J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101-111. doi: 10.1109/48.50695
    [2]
    HE D M, SEET G G L. Divergent-beam lidar imaging in turbid water[J]. Optics & Lasers in Engineering, 2004, 41(1): 217-231.
    [3]
    HU H, YANG S, LI X, et al. Polarized image super-resolution via a deep convolutional neural network [J]. Optics Express, 31(5): 8535-8547.
    [4]
    梁健, 巨海娟, 张文飞, 等. 偏振光学成像去雾技术综述[J]. 光学学报, 2017, 37(4): 0400001. doi: 10.3788/AOS201737.0400001

    LIANG Jian, JU Haijuan, ZHANG Wenfei, et al. Review of dehazing techniques for polarized optical imaging[J]. Acta Optica Sinica, 2017, 37(4): 0400001. doi: 10.3788/AOS201737.0400001
    [5]
    LI X, XU J, ZHANG L, et al. Underwater image restoration via stokes decomposition[J]. Optics Letters, 2022, 47(11): 2854-2857. doi: 10.1364/OL.457964
    [6]
    LI X B, HU H F, LIN Z, et al. Polarimetric image recovery method combining histogram stretching for underwater imaging[J]. Scientific Reports, 2018, 8(1): 1-10.
    [7]
    LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108-128. doi: 10.1038/scientificamerican1277-108
    [8]
    HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 33(12): 2341-2353.
    [9]
    TREIBITZ T, SCHECHNER Y Y. Active polarization descattering[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(3): 385-399.
    [10]
    TAN R T. Visibility in bad weather from a single image[C]//Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA: IEEE, 2008: 1-8.
    [11]
    CAI B, XU X, JIA K, et al. Dehazenet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.
    [12]
    LI B, PENG X, WANG Z, et al. Aod-Net: all-in-one dehazing network [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 4780-4788.
    [13]
    ZHANG H, PATEL V M. Densely connected pyramid dehazing network[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 3194-3203.
    [14]
    QI P, LI X, ZHAI J, et al. U2r-Pgan: unpaired underwater-image recovery with polarimetric generative adversarial network[J]. Optics and Lasers in Engineering, 2022, 157: 107112. doi: 10.1016/j.optlaseng.2022.107112
    [15]
    NARASIMHAN S G, NAYAR S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254. doi: 10.1023/A:1016328200723
    [16]
    周文舟, 范晨, 胡小平, 等. 多尺度奇异值分解的偏振图像融合去雾算法与实验 [J]. 中国光学, 2021, 14: 298-306.

    ZHOU Wenzhou , FAN Chen, HU Xiaoping, et al. Polarization image fusion dehazing algorithm and experiment based on multiscale singular value decomposition[J]. Chinese Optics, 2021, 14: 298-306.
    [17]
    LIANG J, REN L, LIANG R. Low-pass filtering based polarimetric dehazing method for dense haze removal[J]. Optics Express, 2021, 29(18): 28178-28189. doi: 10.1364/OE.427629
    [18]
    QU Y, ZOU Z. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature[J]. Optics Express, 2017, 25(21): 25004-25022. doi: 10.1364/OE.25.025004
    [19]
    SUN R, LIAO T, FAN Z, et al. Polarization dehazing method based on separating and iterative optimizing airlight from the frequency domain for different concentrations of haze[J]. Applied Optics, 2022, 61(35): 10362-10373.
    [20]
    DONG Z M, ZHENG D F, HUANG Y T, et al. A polarization-based image restoration method for both haze and underwater scattering environment[J]. Scientific Reports, 2022, 12(1): 1836. doi: 10.1038/s41598-022-05852-1
    [21]
    GOLDSTEIN D H. Polarized Light [M]. Boston: CRC Press Taylor&Francis Group, 2017.
    [22]
    KIM J H, JANG W D, SIM J Y, et al. Optimized contrast enhancement for real-time image and video dehazing[J]. Journal of Visual Communication & Image Representation, 2013, 24(3): 410-425.
    [23]
    ZUIDERVELD K. Contrast limited adaptive histogram equalization[J]. Graphics Gems, 1994, 4: 474-485.
    [24]
    HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33: 2341-2353.
    [25]
    WEI Y, HAN P L, LIU F, et al. Estimation and removal of backscattered light with nonuniform polarization information in underwater environments[J]. Optics Express, 2022, 30(22): 40208-40220. doi: 10.1364/OE.471337
    [26]
    AGAIAN S S, PANETTA K, GRIGORYAN A M. Transform-based image enhancement algorithms with performance measure[J]. IEEE Transactions on Image Processing, 2001, 10(3): 367-382. doi: 10.1109/83.908502
    [27]
    卢彦飞, 张涛, 郑健, 等. 基于局部标准差与显著图的模糊图像质量评价方法[J]. 吉林大学学报(工学版), 2016, 46: 1337-1343.

    LU Yanfei, ZHANG Tao, ZHENG Jian, et al. No-reference blurring image quality assessment based on local standard deviation and saliency map[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46: 1337-1343.
    [28]
    唐菊香, 宋凤丽. 基于图像信息熵优化参数的能见度检测方法[J]. 电子技术与软件工程, 2020(23): 111-113.

    TANG Juxiang, SONG Fengli. Visibility detection method based on image information entropy optimisation parameters[J]. Electronic Technology & Software Engineering, 2020(23): 111-113.
    [29]
    陈显, 陈兵. 灰度图像对比度提高方法及其评价[J]. 数字通信世界, 2018(10): 225-226. doi: 10.3969/J.ISSN.1672-7274.2018.10.188

    CHEN Xian, CHEN Bing. Contrast enhancement method for grey scale images and its evaluation[J]. Digital Communication World, 2018(10): 225-226. doi: 10.3969/J.ISSN.1672-7274.2018.10.188

Catalog

    Article views (129) PDF downloads (67) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return