YANG Weibin, WANG Chunyan, ZHANG Weiguo, et al. Method of detecting microlens wavefront by Hartmann sensor[J]. Journal of Applied Optics, 2025, 46(2): 380-387. DOI: 10.5768/JAO202546.0203003
Citation: YANG Weibin, WANG Chunyan, ZHANG Weiguo, et al. Method of detecting microlens wavefront by Hartmann sensor[J]. Journal of Applied Optics, 2025, 46(2): 380-387. DOI: 10.5768/JAO202546.0203003

Method of detecting microlens wavefront by Hartmann sensor

More Information
  • Received Date: January 31, 2024
  • Revised Date: July 15, 2024
  • Available Online: March 15, 2025
  • With the wide application of microlens, the rapid detection of optical properties of microlens is a key problem to be solved urgently by users and processors. Hartmann wavefront sensor was used to detect the wavefront of microlens and to quickly characterize its optical properties. In order to verify the feasibility of this method, the overall scheme of measuring microlens wavefront with Hartmann sensor was designed, the measurement experiment system was set up, and the measurement error source was analyzed. Combined with the experimental scheme, the centroid extraction algorithm and the Zernike polynomial wavefront reconstruction algorithm were studied to ensure the centroid extraction accuracy and wavefront reconstruction accuracy of the spot, and the effect of aperture diffraction of the lens to be tested on the wavefront detection accuracy was analyzed. The wavefront error and primary aberration information of a 200 μm convex lens were obtained, which provided a new idea for the rapid detection of optical properties of microlenses.

  • [1]
    林家春, 滕辰, 李晗晓, 等. 基于粗糙度轮廓仪的圆柱齿轮齿廓形状偏差测量[J]. 仪器仪表学报, 2020, 41(12): 15-22.

    LIN Jiachun, TENG Chen, LI Hanxiao, et al. Measurement of profile shape deviation of cylindrical gear based on roughness profiler[J]. Journal of Instrumentation and Meter, 2020, 41(12): 15-22.
    [2]
    周亮, 王振环, 孙东辰, 等. 现代精密测量技术现状及发展[J]. 仪器仪表学报, 2017, 38(8): 1869-1878. doi: 10.3969/j.issn.0254-3087.2017.08.005

    ZHOU Liang, WANG Zhenhuan, SUN Dongchen, et al. The current situation and development of modern precision measurement technology[J]. Journal of Instrumentation, 2017, 38(8): 1869-1878. doi: 10.3969/j.issn.0254-3087.2017.08.005
    [3]
    朱日宏, 孙越, 沈华南, 等. 光学自由曲面面形检测方法进展与展望[J]. 光学学报, 2021, 41(1): 161-178.

    ZHU Rihong, SUN Yue, SHEN Huanan, et al. Progress and prospect of optical freeform surface detection methods[J]. Journal of Optics, 2021, 41(1): 161-178.
    [4]
    LU E H, ZHANG R T, LIU J, et al. Observation of ground surface roughness values obtained by stylus profilometer and white light interferometer for common metal materials[J]. Surface and Interface Analysis, 2022, 54(6): 587-599.
    [5]
    GHODRATI S, KANDI S G, MOHSENI M. Nondestructive, fast, and cost-effective image processing method for roughness measurement of randomly rough metallic surfaces[J]. Journal of the Optical Society of America A, 2018, 35(6): 998-1013. doi: 10.1364/JOSAA.35.000998
    [6]
    MA X, WANG J, WANG B, et al. Research on optical metrology for complex optical surfaces with focal plane wavefront sensing[J]. Micromachines, 2023, 14(6): 1142. doi: 10.3390/mi14061142
    [7]
    付翔宇, 王道档, 吴振东, 等. 用于在线检测的紧凑型瞬态干涉测量系统[J]. 仪器仪表学报, 2020, 41(2): 78-84.

    FU Xiangyu, WANG Daodang, WU Zhendong, et al. Compact transient interferometry system for on-line measurement[J]. Journal of Instrumentation, 2020, 41(2): 78-84.
    [8]
    ZHAO M, ZHAO W, YANG K, et al. Shack-Hartmann wavefront sensing based on four-quadrant binary phase modulation[J]. Photonics, 2022, 9(8): 575.
    [9]
    田爱玲, 张宏, 李慧玲, 等. 重构Zernike多项式在微透镜测量中的应用[J]. 西安工业大学学报, 2011, 31(2): 120-124. doi: 10.3969/j.issn.1673-9965.2011.02.004

    TIAN Ailing, ZHANG Hong, LI Huiling, et al. Application of reconstructed Zernike polynomial in microlens measurement[J]. Journal of Xi'an Technological University, 2011, 31(2): 120-124. doi: 10.3969/j.issn.1673-9965.2011.02.004
    [10]
    王晶, 王孝坤, 胡海翔, 等. 夏克哈特曼扫描拼接检测平面镜(特邀)[J]. 红外与激光工程, 2021, 50(10): 67-73.

    WANG Jing, WANG Xiaokun, HU Haixiang, et al. Shak-Hartmann scanning splicing detection of flat mirror[J]. Infrared and Laser Engineering, 2021, 50(10): 67-73.
    [11]
    戴勋义. 基于扫描哈特曼的大型望远镜像质检测技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020.

    DAI Xunyi. Research on large telescope image quality detection technology based on scanning Hartman[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optoelectronic Technology, Chinese Academy of Sciences), 2020.
    [12]
    YU L, LI D, RUAN Y, et al. Wavefront aberration measurement deflectometry for imaging lens tests[J]. Applied Sciences-Basel, 2022, 12(15): 7857. doi: 10.3390/app12157857
    [13]
    YANG X, XIE J, LIU R, et al. Centroid extraction of laser spots captured by infrared detectors combining laser footprint images and detector observation data[J]. Remote Sensing, 2023, 15(8): 2129.
    [14]
    GU D, LIU X. Shack-Hartmann wavefront sensor based on Kalman filter[J]. Optical Engineering, 2022, 61(9): 093106.
    [15]
    ZHAO M, ZHAO W, WANG S, et al. Centroid-predicted deep neural network in Shack-Hartmann sensors[J]. IEEE Photonics Journal, 2022, 14(1): 1-10.
    [16]
    CHENG X, YAN L, LIU L, et al. Fabrication-error analysis of injection-molded aspheric elements using typical aberration terms in transmitted wavefront with Shack-Hartmann wavefront-sensing measurement[J]. Optical Engineering, 2020, 59(12): 123102.
    [17]
    魏平, 李新阳, 罗曦, 等. 夏克-哈特曼波前传感器数字仿真平台的设计和验证[J]. 中国激光, 2021, 48(17): 141-150.

    WEI Ping, LI Xinyang, LUO Xi, et al. Design and verification of Shake-Hartman wavefront sensor digital simulation platform[J]. Chinese Journal of Lasers, 2021, 48(17): 141-150.
  • Related Articles

    [1]HE Wenfan, XU Junqi, LI Yang. Effects of different preparation parameters on optical properties of porous TiO2 thin films[J]. Journal of Applied Optics, 2024, 45(6): 1277-1283. DOI: 10.5768/JAO202445.0605002
    [2]WANG Weimin, HE Yingwei, XU Yinuo, XU Nan, JING Xufeng, LIU Xiangliang, FU Yangting, GAN Haiyong. Optical properties measuring device based on tunable femtosecond laser[J]. Journal of Applied Optics, 2020, 41(4): 717-722. DOI: 10.5768/JAO202041.0407005
    [3]SHI Yunyun, XU Junqi, SU Junhong. Optical, electrical and mechanical properties and applications of multicomponent composite films[J]. Journal of Applied Optics, 2020, 41(2): 405-420. DOI: 10.5768/JAO202041.0205005
    [4]Cai Peng, Zhu Hairong, Ren Yongjian, Zhu Hai, Wang Guanghui, Jiang lu. Optical properties measurement of underwater environment[J]. Journal of Applied Optics, 2018, 39(1): 83-87. DOI: 10.5768/JAO201839.0103001
    [5]Zhou Xiao-bin, Luan Ya-dong, Shi Lei-lei, Lei Zeng-qiang. Structural parameters calibration of Hartmann-Shack sensor based on known spherical wavefront[J]. Journal of Applied Optics, 2015, 36(6): 909-912. DOI: 10.5768/JAO201536.0603002
    [6]Guo Guang-yan, Fan Zhong-wei, Yu Jin, Ge Wen-qi, Kang Zhi-jun, Tang Xiong-xin, Mo Ze-qiang, Wang Hao-cheng, Shi Zhao-hui. Wavefront detection technology based on Shark-Hartmann theory[J]. Journal of Applied Optics, 2014, 35(5): 823-829.
    [7]PAN Yong-qiang, BAI Tao, TIAN Yu-jun. Influence of UV irradiation on optical property of TiO2 thin film[J]. Journal of Applied Optics, 2013, 34(1): 128-132.
    [8]LI Hong-zhuang, WANG Zhi-chen, LIU Xin-yue, WEI Pei-feng, MING Ming, MENG Hao-ran. Application of Shack-Hartmann wavefront sensor in optical testing[J]. Journal of Applied Optics, 2012, 33(1): 134-138.
    [9]LIAO Zhi-bo, JIAO Wen-chun-FU Rui-min, . Thermal optics property simulation of optical window for remote sensing[J]. Journal of Applied Optics, 2011, 32(3): 407-410.
    [10]SHEN Hong-bin, ZHANG Chu, SHEN Xue-ju, SUN Yu-jie, HUANG Fu-yu, YAN Zong-qun. Real-time wavefront reconstruction based on diffraction grating wavefront curvature sensor[J]. Journal of Applied Optics, 2009, 30(1): 50-55.

Catalog

    Article views (12) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return