WANG Changmiao, LI Hui, SU Chenbo, WU Yuntao. Convex optimization-based mesoscopic 3D reconstruction method for fluorescence-free light fields[J]. Journal of Applied Optics, 2024, 45(6): 1179-1188. DOI: 10.5768/JAO202445.0602002
Citation: WANG Changmiao, LI Hui, SU Chenbo, WU Yuntao. Convex optimization-based mesoscopic 3D reconstruction method for fluorescence-free light fields[J]. Journal of Applied Optics, 2024, 45(6): 1179-1188. DOI: 10.5768/JAO202445.0602002

Convex optimization-based mesoscopic 3D reconstruction method for fluorescence-free light fields

More Information
  • Received Date: August 06, 2023
  • Revised Date: November 08, 2023
  • Available Online: July 03, 2024
  • Currently, the microscopic 3D observation primarily relies on specific fluorescence staining, which will cause irreversible damage to samples and presents issues such as high cost and phototoxicity. A novel method for mesoscopic high-resolution 3D reconstruction without fluorescence was proposed, known as RGB-MesoLFM. First, a fluorescence-free labeled white-light mesoscopic circuit was constructed, where the RGB three-band light field data were decoupled. Subsequently, based on fluctuating optics point spread function, the point impulse response of the system at any depth within the three bands was computed. Finally, an objective function was developed using convex optimization theory, considering the RGB three-band light field data and point impulse response as input for 3D deconvolution iteration, which can reconstruct the slice image of the high-resolution target object at any depth. The 3D reconstruction experiment was based on the light field sampling results of egg embryo slices, and could obtain slice images in the range of 0~−20 µm with a sequence interval of 4 µm. Compared with the traditional fluorescence reconstruction method, the proposed method does not require fluorescence, but uses white light for imaging. The reconstructed peak signal to noise ratio (PSNR) value of arbitrary depth slices is about 10% higher than that of traditional methods.

  • [1]
    FOO W, WIEDE A, BIERWIRTH S, et al. Automated multicolor mesoscopic imaging for the 3-dimensional reconstruction of fluorescent biomarker distribution in large tissue specimens[J]. Biomedical Optics Express, 2022, 13(7): 3723-3742. doi: 10.1364/BOE.455215
    [2]
    GAO S, LI M, NIZAM N I, et al. End-to-end reconstruction for mesoscopic fluorescence molecular tomography via deep learning[J]. communications, 2021, 562: 29-35.
    [3]
    YANG F, OZTURK M S, ZHAO L, et al. High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing[J]. IEEE Transactions on Biomedical Engineering, 2014, 62(1): 248-255.
    [4]
    BJÖRN S, ENGLMEIER K H, NTZIACHRISTOS V, et al. Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography[J]. Journal of Biomedical Optics, 2011, 16(4): 046005. doi: 10.1117/1.3560631
    [5]
    CHEN Y, FAULKNER D, YANG F. Parallel fast 3D reconstruction for tumor microvascular network in mesoscopic fluorescent molecular tomography[C]//Clinical and Translational Biophotonics. [S. l. ]: Optica Publishing Group, 2020: JTh2A. 17.
    [6]
    COSTANTINI I, BARIA E, SORELLI M, et al. MAGIC: a label-free fluorescence method for 3D high-resolution reconstruction of myelinated fibers in large volumes[EB/OL]. (2020-07-29). [2023-08-01]. https://www.biorxiv.org/content/biorxiv/early/2020/07/29/2020.07.28.225011.full.pdf.
    [7]
    SCARDIGLI M, PESCE L, BRADY N, et al. Comparison of different tissue clearing methods for three-dimensional reconstruction of human brain cellular anatomy using advanced imaging techniques[J]. Frontiers in Neuroanatomy, 2021, 15: 752234. doi: 10.3389/fnana.2021.752234
    [8]
    FIELD J J, SQUIER J A, BARTELS R A. Fluorescent coherent diffractive imaging with accelerating light sheets[J]. Optics Express, 2019, 27(9): 13015-13030. doi: 10.1364/OE.27.013015
    [9]
    NTZIACHRISTOS V, RAZANSKY D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT)[J]. Chemical Reviews, 2010, 110(5): 2783-2794. doi: 10.1021/cr9002566
    [10]
    REN M, CHEN J, CHEN D, et al. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics[J]. Optics Letters, 2020, 45(9): 2656-2659. doi: 10.1364/OL.392947
    [11]
    LEVOY M, NG R, ADAMS A, et al. Light field microscopy[C]//ACM Siggraph 2006 Papers. [S. l. ]: ACM, 2006: 924-934.
    [12]
    BROXTON M, GROSENICK L, YANG S, et al. Wave optics theory and 3-D deconvolution for the light field microscope[J]. Optics Express, 2013, 21(21): 25418-25439. doi: 10.1364/OE.21.025418
    [13]
    WANG Z, ZHU L, ZHANG H, et al. Real-time volumetric reconstruction of biological dynamics with light-field microscopy and deep learning[J]. Nature Methods, 2021, 18(5): 551-556. doi: 10.1038/s41592-021-01058-x
    [14]
    NÖBAUER T, ZHANG Y, KIM H, et al. Mesoscale volumetric light-field (MesoLF) imaging of neuroactivity across cortical areas at 18 Hz[J]. Nature Methods, 2023, 20(4): 600-609. doi: 10.1038/s41592-023-01789-z
    [15]
    XUE Y, DAVISON I G, BOAS D A, et al. Single-shot 3D wide-field fluorescence imaging with a computational miniature mesoscope[J]. Science Advances, 2020, 6(43): eabb7508. doi: 10.1126/sciadv.abb7508
    [16]
    LI H, GUO C, KIM-HOLZAPFEL D, et al. Fast, volumetric live-cell imaging using high-resolution light-field microscopy[J]. Biomedical Optics Express, 2019, 10(1): 29-49. doi: 10.1364/BOE.10.000029
    [17]
    WANG S, LI B, ZHANG F. Molecular fluorophores for deep-tissue bioimaging[J]. ACS Central Science, 2020, 6(8): 1302-1316. doi: 10.1021/acscentsci.0c00544
    [18]
    ROSSI M, FROSSARD P. Graph-based light field super-resolution[C]//2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP). New York: IEEE, 2017: 1-6.
    [19]
    LI H, YU Y, PENG J, et al. Resolution improvement of light field imaging via a nematic liquid crystal microlens with added multi-walled carbon nanotubes[J]. Sensors, 2020, 20(19): 5557. doi: 10.3390/s20195557
    [20]
    IFTHEKHAR M S, HOSSAIN M A, HONG C H, et al. Radiometric and geometric camera model for optical camera communications[C]//2015 Seventh International Conference on Ubiquitous and Future Networks. New York: IEEE, 2015: 53-57.
    [21]
    CLEMENTS R J, DAVIDSON M, MODEL M A. Experimental test of the geometric model of image formation in bright-field microscopy[J]. Journal of Microscopy, 2021, 283(1): 3-8. doi: 10.1111/jmi.13002
    [22]
    WU J, LU Z, JIANG D, et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale[J]. Cell, 2021, 184(12): 3318-3332.
    [23]
    WU J, GUO Y, DENG C, et al. An integrated imaging sensor for aberration-corrected 3D photography[J]. Nature, 2022, 612(7938): 62-71. doi: 10.1038/s41586-022-05306-8
  • Related Articles

    [1]WEI Wei, CHEN Fen, ZHANG Huabo, LUO Yingguo, ZHANG Peng, PENG Zongju. Light field images super-resolution based on sub-pixel and gradient guide[J]. Journal of Applied Optics, 2024, 45(5): 956-965. DOI: 10.5768/JAO202445.0502003
    [2]HE Dahua, CHENG Pu, LI Yangyang. Monte Carlo method for solving underwater light field[J]. Journal of Applied Optics, 2023, 44(2): 268-274. DOI: 10.5768/JAO202344.0201005
    [3]YU Buzhao, WANG Jiming, WU Tong, HE Chongjun, LU Yuangang, LIU Youwen. Optical rotation properties of TeO2 crystal based on vector light field[J]. Journal of Applied Optics, 2021, 42(6): 963-968. DOI: 10.5768/JAO202142.0601003
    [4]YU Miao, LIU Cheng. Single exposure light field imaging based all-in-focus image reconstruction technology[J]. Journal of Applied Optics, 2021, 42(1): 71-78. DOI: 10.5768/JAO202142.0102004
    [5]YAN Xuewen, LI Hua, HE Liang, QIAO Pei, LI Deyuan. Point spread function acquisition of light field camera in 3D dose verification system for radiotherapy[J]. Journal of Applied Optics, 2021, 42(1): 43-48. DOI: 10.5768/JAO202142.0101007
    [6]YAN Xuewen, HE Liang, LI Hua, LI Deyuan, ZHANG Xiaodong. Calibration method of light field refocusing position in 3D dose measurement system based on scintillator[J]. Journal of Applied Optics, 2020, 41(4): 822-828. DOI: 10.5768/JAO202041.0409804
    [7]CHANG Qing, ZHAO Shuangming. Light field refocusing analysis of different interpolation algorithms[J]. Journal of Applied Optics, 2020, 41(3): 482-489. DOI: 10.5768/JAO202041.0302001
    [8]LIU Xiaomin, MA Zhibang, WANG Qiancheng, DU Mengzhu, ZHU Yunfei, MA Fengying, LIANG Erjun. Compression light field reconstruction and depth estimation[J]. Journal of Applied Optics, 2019, 40(2): 179-185. DOI: 10.5768/JAO201940.0201001
    [9]ZHANG Biao, GAO Wei, YANG Zhao-jin, YANG Hong-ru. Light field distribution in side-pumped rod-shaped laser medium of laser diode arrays[J]. Journal of Applied Optics, 2009, 30(2): 338-343.
    [10]XUE Chun-rong, MA Li. Micro-mechanism interacting between high polymer and light field[J]. Journal of Applied Optics, 2006, 27(5): 385-389.

Catalog

    Article views (167) PDF downloads (49) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return