Citation: | FU Xiuhua, REN Kaifa, WANG Ben, PAN Yonggang, LIN Zhaowen, SU Jiulin, DONG Suotao, ZHANG Gong. Development of 10 μm~11 μm bandpass filter for surface temperature detection[J]. Journal of Applied Optics, 2024, 45(6): 1138-1146. DOI: 10.5768/JAO202445.0601005 |
The multispectral spectral imager equipped with a long-wave infrared detector can provide spatially high-resolution surface temperature information, and the study of surface temperature is of great significance in the global energy balance and climate change. A 10 μm~11 μm filter was used as the window of the infrared detector for surface temperature detection, and a wide-cutoff and high-transmission long-wave infrared bandpass filter film was designed on a Ge substrate using Ge and ZnS as the high and low refractive index materials, respectively. Vacuum coating technology was used to prepare long-wavelength pass and short-wavelength pass filter films on both sides of the Ge plate to realize the bandpass, in which Ge and ZnS films were deposited by electron beam and resistive thermal evaporation, respectively, and the film thickness was controlled by a crystal controller. The mathematical model of film thickness deposition was established by Matlab software, which simulated and corrected the tooling of the multilayered film in order to reduce the thickness error. The test results show that the average transmittance of 10 μm~11 μm reaches 94.3%, and the ripple amplitude of the transmittance area is 1.6%, of which the average transmittance of 4 μm~9.5 μm and 11.5 μm~16 μm is less than 0.1%, and the filter meets the requirements of the use through various environmental tests.
[1] |
赵坚, 孟令杰, 王琦, 等. 我国高分辨率对地观测系统建设与发展[J]. 卫星应用, 2022(11): 8-13. doi: 10.3969/j.issn.1674-9030.2022.11.005
ZHAO Jian, MENG Lingjie, WANG Qi, et al. Construction and development of high-resolution earth observation system in China[J]. Satellite Applications, 2022(11): 8-13. doi: 10.3969/j.issn.1674-9030.2022.11.005
|
[2] |
李少梅, 罗崇泰, 熊玉卿, 等. 10.4 μm~12.5 μm带通滤光片的设计[J]. 真空与低温, 1999(3): 49-52.
LI Shaomei, LUO Chongtai, XIONG Yuqing, et al. Design of 10.4 μm~12.5 μm pass-band optical filter[J]. Vacuum and Cryogenics, 1999(3): 49-52.
|
[3] |
张麟, 张素英. PbGeTe材料在长波红外低温滤光片镀制中的应用[C]//中国仪器仪表学会2004年光学仪器研讨会论文集. 上海: 上海光学仪器研究所, 2004: 3.
ZHANG Lin, ZHANG Suying. The application of PbGeTe in deposition of low temperature long wavelength IR filters [C]//Chinese Society of Instrumentation. Proceedings of the 2004 Symposium on Optical Instruments. Shanghai: Shanghai Institute of Optical Instruments, 2004: 3.
|
[4] |
STOLBERG-ROHR T , HAWKINS G J . Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared[J]. Optics Express, 2015, 23(1): 580-596.
|
[5] |
叶自煜, 王多书, 张佰森, 等. 宽截止长波红外带通滤光片的研制[J]. 真空科学与技术学报, 2009, 29(增刊1): 39-41. doi: 10.3969/j.issn.1672-7126.2009.z1.09
YE Ziyu, WANG Duoshu, ZHANG Baisen, et al. Development of infrared pass-band filters with wide rejection band[J]. Journal of Vacuum Science and Technology, 2009, 29(S1): 39-41. doi: 10.3969/j.issn.1672-7126.2009.z1.09
|
[6] |
何虎, 许晴, 张杰, 等. 六氟化硫气体探测用10.56 μm窄带滤光片的研制[J]. 光学仪器, 2021, 43(6): 46-51.
HE Hu, XU Qing, ZHANG Jie et al. Development of 10.56 μm NBP filter for sulfur hexafluoride gas detection[J]. Optical Instruments, 2021, 43(6): 46-51.
|
[7] |
段英. 红外测温目标光谱发射率特性研究[D]. 成都: 电子科技大学, 2020.
DUAN Ying. Study on spectral emissivity characteristic of target in infrared temperature measurement [D]. Chengdu: University of Electronic Science and Technology, 2020.
|
[8] |
唐晋发 , 顾培夫, 刘旭 , 等. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006.
TANG Jinfa, GU Peifu, LIU Xu, et al. Modern optical thin film technology [M]. Hzngzhou: Zhejiang University Press, 2006.
|
[9] |
唐晋发, 郑权. 应用薄膜光学[M]. 上海: 上海科学技术出版社, 1984.
TANG Jinfa, ZHENG Quan. Applied thin film optics [M]. Shanghai: Shanghai Science and Technology Press, 1984.
|
[10] |
李刚, 杜鹃, 田湫, 等. Ge基底8 μm~11.5 μm长波通滤光膜的研制[J]. 红外技术, 2008, 30(3): 139-142. doi: 10.3969/j.issn.1001-8891.2008.03.005
LI Gang, DU Juan, TIAN Qiu, et al. The design and fabrication of 8 µm~11.5 µm filter film on Ge substrate[J]. Infrared Technology, 2008, 30(3): 139-142. doi: 10.3969/j.issn.1001-8891.2008.03.005
|
[11] |
查家明, 李斯成, 唐乾隆. 红外中带滤光片的结构、带宽估算及调整[J]. 应用光学, 2007, 28(2): 151-155. doi: 10.3969/j.issn.1002-2082.2007.02.008
CHA Jiaming, LI Sicheng, TANG Qianlong. Structure, bandwidth estimation and adjustment of medium bandpass infrared filter[J]. Journal of Applied Optics, 2007, 28(2): 151-155. doi: 10.3969/j.issn.1002-2082.2007.02.008
|
[12] |
王利, 王占山, 吴永刚, 等. 基于Fabry-Perot结构的多通道滤光片的设计[J]. 光学精密工程, 2003, 11(6): 643-646. doi: 10.3321/j.issn:1004-924X.2003.06.020
WANG Li, WANG Zhanshan, WU Yonggang, et al. Design of multiple-channel filter based on Fabry-Perot structure[J]. Optical Precision Engineering, 2003, 11(6): 643-646. doi: 10.3321/j.issn:1004-924X.2003.06.020
|
[13] |
王航, 熊长新, 何光宗. 组合结构的中波红外带通滤光片研制[J]. 光学与光电技术, 2015, 13(4): 83-86.
WANG Hang, XIONG Changxin, HE Guangzong. Design and preparation of medium-wavelength infrared band pass combined filter[J]. Optics and Photonics Technology, 2015, 13(4): 83-86.
|
[14] |
赵兴梅, 师建涛, 郭鸿香. 短波通滤光片膜系设计[J]. 应用光学, 2006, 27(5): 415-418. doi: 10.3969/j.issn.1002-2082.2006.05.013
ZHAO Xingmei, SHI Jiantao, GUO Hongxiang. Film system design for short-wavelength pass filter[J]. Journal of Applied Optics, 2006, 27(5): 415-418. doi: 10.3969/j.issn.1002-2082.2006.05.013
|
[15] |
朱华新, 王彤彤, 高劲松, 等. 宽通带宽截止带通滤光片研究[J]. 人工晶体学报, 2014, 43(5): 1296-1301. doi: 10.3969/j.issn.1000-985X.2014.05.047
ZHU Huaxin, WANG Tongtong, GAO Jinsong, et al. Study on broad pass-band and wide rejection band of band-pass filters[J]. Journal of Artificial Crystals, 2014, 43(5): 1296-1301. doi: 10.3969/j.issn.1000-985X.2014.05.047
|
[1] | MA Shibang, LI Dong, XIE Qi, LI Hongguang, ZHANG Deng, CHU Junwei, SUN Yu'nan. Calibration technology for spectral range and signal-to-noise ratio of terahertz time-domain spectrometer[J]. Journal of Applied Optics, 2023, 44(5): 1068-1072. DOI: 10.5768/JAO202344.0503002 |
[2] | GONG Wulin, LI Zhanfeng, LIU Quancheng, DENG Hu, WU Zhixiang. Applications of thickness measurement method based on terahertz time-of-flight in atmospheric environment[J]. Journal of Applied Optics, 2023, 44(4): 809-815. DOI: 10.5768/JAO202344.0403001 |
[3] | LI Zhilei, LIU Haifeng, CHI Weiwei, ZHOU Limei, XIE Fang, LIU Yangyang. Design and application of optical system based on terahertz spectroscopy technology[J]. Journal of Applied Optics, 2022, 43(3): 409-414. DOI: 10.5768/JAO202243.0301005 |
[4] | XIE Yushan, HUANG Yi, ZHONG Yujie, LUO Manting, ZHANG Zhenghao, LIN Tingling, ZHONG Shuncong. Terahertz measurement method of liquid electromagnetic parameters based on Gaussian mixture model[J]. Journal of Applied Optics, 2021, 42(6): 982-988. DOI: 10.5768/JAO202142.0601006 |
[5] | WU Bin, YANG Yanzhao, YING Chengping, LIU Hongyuan, ZHANG Peng, WANG Hengfei. Application of terahertz spectroscopy in THDCPD isomers detection[J]. Journal of Applied Optics, 2020, 41(4): 786-790. DOI: 10.5768/JAO202041.0409903 |
[6] | REN Zewei, ZHAN Honglei, CHEN Sitong, LI Xinyu, ZHANG Yan, CHEN Ru, MENG Zhaohui, QIN Fankai, ZHAO Kun, BAO Rima. Detection of trace crude oil in surface sands by THz time-domain spectroscopy[J]. Journal of Applied Optics, 2020, 41(2): 361-365. DOI: 10.5768/JAO202041.0203004 |
[7] | Mi Yang, Wu Qiannan, Yan Shinong. Design of multiband terahertz filter[J]. Journal of Applied Optics, 2016, 37(5): 759-764. DOI: 10.5768/JAO201637.0505004 |
[8] | SUN Qing, DENG Yu-qiang, YU Jing, XU Tao, Chen Qing-jun. Frequency calibration of terahertz time-domain spectrometers using absorption lines of carbon monoxide[J]. Journal of Applied Optics, 2012, 33(3): 554-557. |
[9] | ZHANG Xue-min, SU Yu. Design of asynchronous image data acquisition system for unmanned aerial vehicles (UAVs)[J]. Journal of Applied Optics, 2010, 31(2): 229-232. |
[10] | FENG Rui-shu, LI Wei-wei, ZHOU Qing-li, MU Kai-jun, ZHANG Liang-liang, ZHANG Cun-lin. Vibrational spectrum of RDX investigated with terahertz time-domain spectroscopy[J]. Journal of Applied Optics, 2009, 30(6): 907-910. |
1. |
杜国军,欧宗耀,张晨阳,王春辉,李旭,李重阳. 真空环境下激光测距仪收发光轴测试方法研究. 激光技术. 2021(05): 561-565 .
![]() |