Citation: | ZHOU Chaohong, QIAN Yunsheng, ZHANG Jingzhi. Modulation transfer function testing system for EBAPS[J]. Journal of Applied Optics, 2024, 45(5): 992-1000. DOI: 10.5768/JAO202445.0503001 |
Electron bombarded active pixel sensor (EBAPS) is a new type of vacuum solid hybrid low light night vision device, and the modulation transfer function (MTF), as one of the performance parameters of EBAPS, can reflect the transmission ability of imaging systems to different frequency components. However, there is currently a lack of corresponding testing methods in China. Therefore, in order to characterize and evaluate the imaging quality of EBAPS, a MTF testing system for EBAPS was designed and built based on the principle of image intensifier slit method for testing MTF. By driving the EBAPS device and using a USB interface to transmit the collected data to the upper computer for image analysis, the slit image was processed to obtain the line spread function (LSF), and the corresponding modulation transfer function curve was obtained through discrete Fourier transform. When the illumination at the slit target was 2×10−2 lx, within a certain range, as the voltage increased, the MTF of EBAPS first increased and then decreased, and reached its maximum value when −1 000 V was applied. In the light imaging mode, by fine-tuning the relative position between the slit and the sensor imaging surface, the standard deviation of MTF values for several important frequency points obtained from 5 consecutive tests was less than 0.01, indicating good stability.
[1] |
张元涛, 曹开钦, 孙德新, 等. 高灵敏度低噪声科学级CMOS图像传感器微光探测[J]. 激光与光电子学进展, 2018, 55(8): 146-154.
ZHANG Yuantao, CAO Kaiqin, SUN Dexin, et al. Low light level detection based on scientific CMOS image sensor with high sensitivity and low noise[J]. Laser & Optoelectronics Progress, 2018, 55(8): 146-154.
|
[2] |
李晓峰, 何雁彬, 常乐, 等. 超二代与三代像增强器性能的比较研究[J]. 红外技术, 2022, 44(8): 764-777.
LI Xiaofeng, HE Yanbin, CHANG Le, et al. Performance comparison between super second generation and third generation image intensifiers[J]. Infrared Technology, 2022, 44(8): 764-777.
|
[3] |
陈旭浪, 党小刚, 郭欣达, 等. 基于三代微光ICCD成像装置的目标对比度影响因素测试分析[J]. 应用光学, 2020, 41(6): 1241-1246. doi: 10.5768/JAO202041.0603004
CHEN Xulang, DANG Xiaogang, GUO Xinda, et al. Test and analysis of factors influncing target contrast ratio based on 3rd generation LLL ICCD imaging device[J]. Journal of Applied Optics, 2020, 41(6): 1241-1246. doi: 10.5768/JAO202041.0603004
|
[4] |
张静, 孙宇勃, 付秀华, 等. 微光系统CMOS光学调色膜的研制[J]. 激光与光电子学进展, 2020, 57(9): 264-270.
ZHANG Jing, SUN Yubo, FU Xiuhua, et al. Development of CMOS optical color modulation films for low-light-level systems[J]. Laser & Optoelectronics Progress, 2020, 57(9): 264-270.
|
[5] |
刘虎林, 王兴, 田进寿, 等. 高分辨紫外电子轰击互补金属氧化物半导体器件的实验研究[J]. 物理学报, 2018, 67(1): 175-180.
LIU Hulin, WANG Xing, TIAN Jinshou, et al. High resolution electron bombareded complementary metal oxide semiconductor sensor for ultraviolet detection[J]. Acta Physica Sinica, 2018, 67(1): 175-180.
|
[6] |
严毅赟. EBAPS器件综合测试技术研究[D]. 南京: 南京理工大学, 2021.
YAN Yiyun. Research on comprehensive testing technology for EBAPS devices[D]. Nanjing: Nanjing University of Science and Technology, 2021.
|
[7] |
AEBI V W, COSTELLO K A, ARCUMI P W, et al. EBAPS: next generation, low power, digital night vision[C]//OPTRO 2005 International Symposium. Paris: [s.n.], 2005: 10.
|
[8] |
唐小东. EBAPS电子轰击性能测试技术研究[D]. 南京: 南京理工大学, 2019.
TANG Xiaodong. Research on EBAPS electronic bombardment performance testing technology[D]. Nanjing: Nanjing University of Science and Technology, 2019.
|
[9] |
倪进园, 王璐子, 王颢, 等. 微光像增强器的MTF测试技术研究[J]. 红外技术, 2019, 41(12): 1161-1166.
NI Jinyuan, WANG Luzi, WANG Hao, et al. Research on measurement technology of the MTF of low-light level image intensifiers[J]. Infrared Technology, 2019, 41(12): 1161-1166.
|
[10] |
陶禹, 金伟其, 王瑶, 等. 高性能近贴式像增强器的调制传递函数分析[J]. 光子学报, 2016, 45(6): 168-173.
TAO Yu, JIN Weiqi, WANG Yao, et al. The MTF analysis of high performance proximity image intensifier[J]. Acta Photonica Sinica, 2016, 45(6): 168-173.
|
[11] |
YANG C H, WANG S C, SHIH P T Y, et al. An experimental comparison of directly and indirectly derived modulation transfer functions[J]. The Photogrammetric Record, 2015, 30(149): 100-114. doi: 10.1111/phor.12098
|
[12] |
赵曼, 姜博, 范秀英, 等. CCD相机调制传递函数的测试分析[J]. 激光与光电子学进展, 2012, 49(7): 98-102.
ZHAO Man, JIANG Bo, FAN Xiuying, et al. Measurement and analysis on the modulation transfer function of CCD camera[J]. Laser & Optoelectronics Progress, 2012, 49(7): 98-102.
|
[13] |
郭晓兵. 基于图像处理的MTF测试系统研究[D]. 南京: 南京理工大学, 2009.
GUO Xiaobing. Research on MTF testing system based on image processing[D]. Nanjing: Nanjing University of Science and Technology, 2009.
|
[14] |
RINO S, AKIHISA T, KENTARO U, et al. Method for estimating modulation transfer function from sample images[J]. Micron: the international research and review journal for microscopy, 2018, 105: 64-69.
|
[15] |
孙钦杰. 光学镜头调制传递函数测试与补偿算法研究[D]. 广州: 广东工业大学, 2022.
SUN Qinjie. Research on testing and compensation algorithm for optical lens modulation transfer function[D]. Guangzhou: Guangdong University of Technology, 2022.
|
[16] |
刘小冬, 张新, 王灵杰, 等. 红外系统MTF狭缝测量法的改进[J]. 红外技术, 2009, 31(9): 521-524.
LIU Xiaodong, ZHANG Xin, WANG Lingjie, et al. Improvement of MTF slit measurement method in infrared system[J]. Infrared Technology, 2009, 31(9): 521-524.
|
[17] |
卞江, 马冬梅, 孙鸽, 等. 红外光电成像系统MTF测试技术分析[J]. 应用光学, 2013, 34(5): 748-753.
BIAN Jiang, MA Dongmei, SUN Ge, et al. MTF test technology analysis of infrared electro-optical imaging system[J]. Journal of Applied Optics, 2013, 34(5): 748-753.
|
[18] |
朱宏权, 王奎禄, 向世明, 等. 微通道板像增强器的调制传递函数的测量与研究[J]. 光子学报, 2007(11): 1983-1987.
ZHU Hongquan, WANG Kuilu, XIANG Shiming, et al. MTF measurement and analysis of micro-channel plate image intensifiers[J]. Acta Photonica Sinica, 2007(11): 1983-1987.
|
[19] |
李升才, 金伟其, 许正光, 等. 微光增强型电荷耦合装置成像系统调制传递函数测量方法研究[J]. 兵工学报, 2005(3): 343-347.
LI Shengcai, JIN Weiqi, XU Zhengguang, et al. Research on measurement method of modulation transfer function for imaging system of low light intensity enhanced charge coupled device[J]. Acta Armamentarii, 2005(3): 343-347.
|
[20] |
严毅赟, 钱芸生, 张景智, 等. 电子轰击有源像素传感器光谱响应测试系统设计[J]. 激光与光电子学进展, 2022, 59(13): 123-128.
YAN Yiyun, QIAN Yunsheng, ZHANG Jingzhi, et al. Design of spectral response test system for electron bombardment active pixel sensor[J]. Laser & Optoelectronics Progress, 2022, 59(13): 123-128.
|
[21] |
苏天宁, 刘峰阁, 王强, 等. 紫外像增强器的调制传递函数测试系统设计[J]. 红外技术, 2022, 44(5): 469-474.
SU Tianning, LIU Fengge, WANG Qiang, et al. Design of modulation transfer function test system for ultraviolet image intensifiers[J]. Infrared Technology, 2022, 44(5): 469-474.
|
1. |
张金玉,金尚忠,张彪,吴磊,俞兵,袁良,黎高平. 光腔衰荡法数据截取对时间常数测量精度的影响分析. 应用光学. 2023(01): 153-158 .
![]() | |
2. |
张彪,张金玉,吉晓,段园园,吴磊,黎高平,于东钰,阴万宏. 测量大口径光学元件反射率用精密扫描系统误差分析. 应用光学. 2023(02): 380-385 .
![]() | |
3. |
赵佳乐,周冰,王广龙,应家驹,王强辉,邓磊. 基于广义逆矩阵的BRDF模型参数拟合方法. 激光技术. 2023(03): 407-412 .
![]() |