Citation: | ZHENG Suzhen. Single-photon 3D reconstruction technology of rotating objects[J]. Journal of Applied Optics, 2024, 45(5): 879-884. DOI: 10.5768/JAO202445.0501001 |
Single photon detection technology has become an important development direction in the field of 3D imaging because of its high sensitivity and high time resolution. APD single photon detection data is 0-1 data representing photon pulse events, which usually needs to be accumulated many times to achieve 3D imaging of the target. While the rotating object cannot be directly accumulated due to its motion. In order to solve the problem of three-dimensional reconstruction of rotating objects, a single photon 3D reconstruction method based on the definition of maximum intensity map was proposed. Firstly, the 3D reconstruction model of rotating objects was established, and then the likelihood estimation model of rotation velocity was established. Finally, the maximum definition of intensity map was taken as the cost function to solve the rotation velocity and reconstruct it. The computer simulation simulated the single photon 3D imaging detection data of the rotating cross object, the 3D reconstruction algorithm was used to achieve the high precision 3D reconstruction of the rotating object, and the simulation verification at different speeds was performed. The simulation results show that the speed estimation error is better than 5% and the depth reconstruction error is better than 0.1 m at different speeds, which verifies the correctness of the reconstruction algorithm.
[1] |
曹智祥, 曾美玲, 杨健, 等. 一种改进型单光子雪崩二极管探测概率模型及验证[J]. 光学学报, 2023, 43(10): 238-245.
CAO Zhixiang, ZENG Meiling, YANG Jian, et al. Detection probability model and verification of an iimproved single photon avalanche diode[J]. Acta Optica Sinica, 2023, 43(10): 238-245.
|
[2] |
李佩展, 钟家强, 张文, 等. 高性能超导相变边缘单光子探测器(特邀)[J]. 光子学报, 2023, 52(5): 11-19.
LI Peizhan, ZHONG Jiaqiang, ZHANG Wen, et al. High-performance superconducting transition- edge single-photon detectors(Invited)[J]. Acta Photonica Sinica, 2023, 52(5): 11-19.
|
[3] |
张飞飞, 彭雷, 袁韬. 单光子探测三维点云与可见光图像融合处理算法研究[J]. 应用光学, 2021, 42(6): 1034-1039. doi: 10.5768/JAO202142.0602004
ZHANG Feifei, PENG Lei, YUAN Tao. Fusion processing algorithm of single-photon detection for three-dimensional point cloud and visible light image[J]. Journal of Applied Optics, 2021, 42(6): 1034-1039. doi: 10.5768/JAO202142.0602004
|
[4] |
杨函霖, 李召辉, 吴光. 1 030 nm单光子探测激光雷达技术[J]. 激光与红外, 2023, 53(11): 1671-1676. doi: 10.3969/j.issn.1001-5078.2023.11.008
YANG Hanlin, LI Zhaohui, WU Guang. 1 030 nm single-photon detection lidar technology[J]. Laser & Infrared, 2023, 53(11): 1671-1676. doi: 10.3969/j.issn.1001-5078.2023.11.008
|
[5] |
LI Z H, PAN H F, SHEN G Y, et al. Single-photon lidar for canopy detection with a multi-channel Si SPAD at 1 064 nm[J]. Optics and Laser Technology, 2023, 157: 108749. doi: 10.1016/j.optlastec.2022.108749
|
[6] |
SCHOLES S , MORA-MARTÍN, G, ZHU F , et al. Simulating single-photon detector array sensors for depth imaging[EB/OL]. (2022-10-07)[2023-05-10]. https://arxiv.org/abs/2210.05644.
|
[7] |
SMITH B, FRICKER H A, HOLSCHUH N, et al. Land ice height-retrieval algorithm for NASA's ICESat-2 photon-counting laser altimeter[J]. Remote Sensing of Environment, 2019, 233: 111352. doi: 10.1016/j.rse.2019.111352
|
[8] |
TANG X, XIE J, LIU R, et al. Overview of the GF-7 laser altimeter system mission[J]. Earth and Space Science, 2020, 7(1): e2019EA000777. doi: 10.1029/2019EA000777
|
[9] |
LUTZMANN P, GOEHLER B, HILL C A, et al. Laser vibration sensing: overview and applications[J]. SPIE: The International Society for Optical Engineering, 2011, 56(3): 031215.031211-031215.031219.
|
[10] |
陈军燕, 廖龙文, 曾鹏. 美国地基反卫星激光武器发展分析[J]. 红外与激光工程, 2020, 49(S1): 42-47.
CHEN Junyan, LIAO Longwen, ZENG Peng. Development analysis of American anti-satellite ground-based laser weapon[J]. Infrared and Laser Engineering, 2020, 49(S1): 42-47.
|
[11] |
刘爱芳, 朱晓华, 刘中. 基于修正离散Chirp Fourie变换的高速目标ISAR距离像补偿[J]. 航空学报, 2004, 25(5): 495-498. doi: 10.3321/j.issn:1000-6893.2004.05.015
LIU Aifang, ZHU Xiaohua, LIU Zhong. ISAR range profile compensation of fast-moving target using modified discrete Chirp-Fourier transform[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5): 495-498. doi: 10.3321/j.issn:1000-6893.2004.05.015
|
[12] |
吴兆平, 符渭波, 苏涛, 等. 基于快速Radon-Fourier变换的雷达高速目标检测[J]. 电子与信息学报, 2012, 34(8): 1866-1871.
WU Zhaoping, FU Weibo, SU Tao, et al. High speed radar target detection based on fast Radon-Fourier transform[J]. Journal of Electronics & Information Technology, 2012, 34(8): 1866-1871.
|
[13] |
董鹏曙, 向龙, 谢幼才, 等. 高速机动目标信号多普勒频移补偿方法[J]. 探测与控制学报, 2016, 38(3): 67-70.
DONG Pengshu, XIANG Long, XIE Youcai, et al. Doppler frequency shift and coherent integration performance of high speed maneuvering targets[J]. Journal of Detection & Control, 2016, 38(3): 67-70.
|
[14] |
SHIN D, KIRMANI A, GOYAL V K, et al. Photon-efficient computational 3D and reflectivity imaging with single-photon detectors[J]. IEEE Transactions on Computational Imaging, 2015, 1(2): 112-125. doi: 10.1109/TCI.2015.2453093
|
[15] |
张瀚夫, 刘杰, 安其昌, 等. 基于单光子计数三维成像的目标姿态获取方法[J]. 激光与光电子学进展, 2023, 60(8): 0811031.
ZHANG Hanfu, LIU Jie, AN Qichang, et al. Single-photon counting 3D imaging-based target attitude acquisition[J]. Laser & Optoelectronics Progress, 2023, 60(8): 0811031-1-8.
|
[16] |
路朋罗. 基于图像处理技术的自动调焦方法研究[D]. 长春:中国科学院长春光学精密机械与物理研究所, 2016.
LU Pengluo. Study on auto-focusing methods based on image processing technology[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016.
|
[1] | HE Sijie, DAI Caihong, CHENG Qiutong, WU Zhifeng, LI Ling, WANG Yanfei. Influence of field of view angle and positioning error on spectral radiance measurement[J]. Journal of Applied Optics, 2023, 44(2): 386-391. DOI: 10.5768/JAO202344.0203004 |
[2] | LIU Hao, ZHAO Tianqi, ZHAN Chunlian, ZOU Yanxia, JIN Shangzhong. Testing technology of vacuum ultraviolet spectral radiance[J]. Journal of Applied Optics, 2022, 43(6): 1138-1144. DOI: 10.5768/JAO202243.0604013 |
[3] | HE Shufang, WANG Yanfei, DAI Caihong, LIU Jinyuan, FENG Guojin. Research of temperature uniformity and size-of-source effect in infrared spectral radiance measurement[J]. Journal of Applied Optics, 2020, 41(4): 737-742. DOI: 10.5768/JAO202041.0406003 |
[4] | HANG Sijia, XIA Maopeng, LI Jianjun, ZHENG Xiaobing, LEI Zhenggang. Noise equivalent radiance calibration system for infrared Fourier spectrometer at low-temperature and vacuum environment[J]. Journal of Applied Optics, 2019, 40(6): 1103-1108. DOI: 10.5768/JAO201940.0603004 |
[5] | LIU Wei-feng, XIE Yong-jie, ZHAO Le-zhi. Measurement and research on sky background radiance luminance[J]. Journal of Applied Optics, 2012, 33(2): 351-354. |
[6] | LI Xu-yang, LI Ying-cai, MA Zhen, YI Hong-wei. Computer-aided alignment method of coaxialthree-mirror-anastigmat system[J]. Journal of Applied Optics, 2009, 30(6): 901-906. |
[7] | JIANG Fei-hong. Infrared radiative transfer model of pollution cloud and computer simulation of infrared spectra[J]. Journal of Applied Optics, 2009, 30(4): 688-691. |
[8] | YAN Hong-rui, MA Li-ju. Application of virtual reality technology in computer simulation[J]. Journal of Applied Optics, 2008, 29(supp): 127-129. |
[9] | SHEN Hua, HE Yong, ZHU Ri-hong. Computer simulation of optical engine for LCD projector[J]. Journal of Applied Optics, 2007, 28(2): 181-186. |
[10] | ZHAN Chun-lian, LIU Jian-ping, LI Zheng-qi, LU Fei, CHEN Chao. Research on measurement of spectral radiance luminance base on hightemperature blackbody[J]. Journal of Applied Optics, 2006, 27(supp): 71-75. |
1. |
杨潇,孙帮勇. 双头增强与非均匀校正的水下图像增强算法. 应用光学. 2024(02): 354-364 .
![]() | |
2. |
朱海荣,蔡鹏,张春磊,张晨阳,陈新东. 海水环境光场水下辐照度测量光学设计. 兵器装备工程学报. 2024(11): 298-303 .
![]() |