GUO Leiping, DUAN Wenbo, GUO Bingtao, WANG Yitian, HAN Qi, CAI Pengcheng, ZHAO Zichun, REN Dong. Evaluation of maneuvering target detection performance based on measured data[J]. Journal of Applied Optics, 2024, 45(4): 665-672. DOI: 10.5768/JAO202445.0401001
Citation: GUO Leiping, DUAN Wenbo, GUO Bingtao, WANG Yitian, HAN Qi, CAI Pengcheng, ZHAO Zichun, REN Dong. Evaluation of maneuvering target detection performance based on measured data[J]. Journal of Applied Optics, 2024, 45(4): 665-672. DOI: 10.5768/JAO202445.0401001

Evaluation of maneuvering target detection performance based on measured data

More Information
  • Received Date: October 18, 2023
  • Revised Date: December 25, 2023
  • Available Online: June 13, 2024
  • The theoretical model evaluation method of static target discrimination performance based on TTP criterion has advantages of strong environmental adaptability, accurate performance prediction and convenient system parameter optimization, but the accuracy of this method in evaluation of moving target detection performance needs to be further studied. In order to accurately evaluate the detection performance of moving targets, the target motion system, infrared target generation system, target acquisition and storage system were established. The experimental method of human eye threshold judgment was used to evaluate target detection performance at different imaging distances, different motion velocities, and different target sizes, and the target detection probability curve was obtained. According to the NVThermIP theoretical model for field performance evaluation, the target detection performance was calculated when the input of system performance parameters was consistent. The experimental results show that the NVThermIP evaluation model has certain deviation for detection performance prediction of moving targets. In the range of target motion rates measured by experiment, the target is easier to detect with the increase of the target motion rate. Research results provide data support for the revision of theoretical model of performance evaluation of moving targets.

  • [1]
    张冬阳, 张建奇. 面向三角靶标的人眼对比度阈值特性实验表征[J]. 西安电子科技大学学报(自然科学版), 2016, 43(6): 91-96.

    ZHANG Dongyang, ZHANG Jianqi. Experimental characterization of the human vision contrast threshold for the triangle pattern[J]. Journal of Xidian University, 2016, 43(6): 177-201.
    [2]
    李捷菲, 尼启良, 王富昕. 适用于微弱信号检测的低噪声仪表放大器[J]. 吉林大学学报(信息 科学版), 2019, 37(3): 547-559.

    LI Jiefei, NI Qiliang, WANG Fuxin. Low noise instrumentation amplifier for small signal detection[J]. Journal of Jilin University(Information Science Edition), 2019, 37(3): 547-559.
    [3]
    BIBERMAN L M. Electro-optical imaging: system performance and modeling[M]. Bellingham, Washington: SPIE Press, 2000: 73-81.
    [4]
    王惠林, 栾亚东, 贺剑. 红外成像系统最小可分辨温差影响因素分析[J]. 应用光学, 2021, 42(1): 1-8.

    WANG Huilin, LUAN Yadong, HE Jian. Analysis on influence factors of MRTD in infrared imaging system[J]. Journal of Applied Optics, 2021, 42(1): 1-8.
    [5]
    孙明昭, 田超, 王佳笑. 不同大气条件下红外成像系统作用距离评估[J]. 激光与红外, 2017, 47(3): 304-307.

    SUN Mingzhao, TIAN Chao, WANG Jiaxiao. Evaluation on operating range of infrared imaging system under different atmospheric conditions[J]. Laser & Infrared, 2017, 47(3): 304-307.
    [6]
    吴颖霞, 张建奇, 杨红坚, 等. Johnson准则在红外成像系统外场识别性能评估中的应用[J]. 光子学报, 2011, 40(3): 438-442. doi: 10.3788/gzxb20114003.0438

    WU Yingxia, ZHANG Jianqi, YANG Hongjian, et al. Application of Johnson criteriain evaluating field detection and recognition probability of IR System[J]. Acta Photonica Sinica, 2011, 40(3): 438-442. doi: 10.3788/gzxb20114003.0438
    [7]
    BIJL P, VALETON J M. TOD: a new method to characterize electro-optical performance[C]// Aerospace defense sensing and controls. Washington: International Society for Optics and Photonics, 2018: 182-193.
    [8]
    MAURER T, DRIGGERS R G, VOLLMERHAUSEN R H, et al. 2002 NVTherm improvements[C]//AeroSense 2002. Washington: International Society for Optics and Photonics, 2002: 15-23.
    [9]
    PREECE B L, FLUG E A. A wavelet contrast metric for the targeting task performance metric[J]. SPIE, 2016, 9820: 98200E-11.
    [10]
    郭丽文. 基于TTP准则的红外成像系统性能评估技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    GUO Liwen. Research on performance evaluation technology of infrared imaging system based on TTP criterion[D]. Harbin: Harbin Institute of Technology, 2021.
    [11]
    TEANEY B P, TOMKINSON D M, HIXSON J G. Legacy modeling and range prediction comparison: NV-IPM versus SSCamIP and NVTherm[J]. SPIE, 2015, 9452: 94520P-12.
    [12]
    王惠林, 宁飞, 冯涛. 基于TTP准则的光电侦察设备作用距离评估[J]. 应用光学, 2019, 40(增刊): 1-7.

    WANG Huilin, NING Fei, FENG Tao. Analysis on influence factors of MRTD in infrared imaging system[J]. Journal of Applied Optics, 2019, 40(Sup): 1-7.
    [13]
    杨卫, 赵迪, 刘前进. 针对运动目标感知的动静态双坐标探测系统[J]. 红外与激光工程, 2014, 43(1): 279-283.

    YANG Wei, ZHAO Di, LIU Qianjin. Moving targets perception of static and dynamic double coordinate detection system[J]. Infrared and Laser Engineering, 2014, 43(1): 279-283.
    [14]
    VOLLMERHAUSEN R. Night vision integrated performance model: impact of a recent change on the model’s predictive accuracy[J]. Optics Express, 2016, 24: 23654-23666. doi: 10.1364/OE.24.023654
    [15]
    KOU R K, WANG C P, FU Q, et al. Detection model and performance evaluation for the infrared search and tracking system[J]. Applied Optics, 2023, 62(2): 398-410. doi: 10.1364/AO.469807
    [16]
    徐尉豪. 基于机器视觉的动态环境运动目标智能识别研究[J]. 激光杂志, 2022, 43(1): 29-32.

    XU Weihao. Automatic recognition of moving objects in dynamic environment based on machine vision[J]. Laser Journal, 2022, 43(1): 29-32.
    [17]
    HAILAN Y, WEILI C. Motion target detection and recognition based on YOLOv4 algorithm[J]. Journal of Physics: Conference Series, 2021, 2025(1): 35-42 .
  • Related Articles

    [1]HE Sijie, DAI Caihong, CHENG Qiutong, WU Zhifeng, LI Ling, WANG Yanfei. Influence of field of view angle and positioning error on spectral radiance measurement[J]. Journal of Applied Optics, 2023, 44(2): 386-391. DOI: 10.5768/JAO202344.0203004
    [2]LIU Hao, ZHAO Tianqi, ZHAN Chunlian, ZOU Yanxia, JIN Shangzhong. Testing technology of vacuum ultraviolet spectral radiance[J]. Journal of Applied Optics, 2022, 43(6): 1138-1144. DOI: 10.5768/JAO202243.0604013
    [3]HE Shufang, WANG Yanfei, DAI Caihong, LIU Jinyuan, FENG Guojin. Research of temperature uniformity and size-of-source effect in infrared spectral radiance measurement[J]. Journal of Applied Optics, 2020, 41(4): 737-742. DOI: 10.5768/JAO202041.0406003
    [4]HANG Sijia, XIA Maopeng, LI Jianjun, ZHENG Xiaobing, LEI Zhenggang. Noise equivalent radiance calibration system for infrared Fourier spectrometer at low-temperature and vacuum environment[J]. Journal of Applied Optics, 2019, 40(6): 1103-1108. DOI: 10.5768/JAO201940.0603004
    [5]LIU Wei-feng, XIE Yong-jie, ZHAO Le-zhi. Measurement and research on sky background radiance luminance[J]. Journal of Applied Optics, 2012, 33(2): 351-354.
    [6]LI Xu-yang, LI Ying-cai, MA Zhen, YI Hong-wei. Computer-aided alignment method of coaxialthree-mirror-anastigmat system[J]. Journal of Applied Optics, 2009, 30(6): 901-906.
    [7]JIANG Fei-hong. Infrared radiative transfer model of pollution cloud and computer simulation of infrared spectra[J]. Journal of Applied Optics, 2009, 30(4): 688-691.
    [8]YAN Hong-rui, MA Li-ju. Application of virtual reality technology in computer simulation[J]. Journal of Applied Optics, 2008, 29(supp): 127-129.
    [9]SHEN Hua, HE Yong, ZHU Ri-hong. Computer simulation of optical engine for LCD projector[J]. Journal of Applied Optics, 2007, 28(2): 181-186.
    [10]ZHAN Chun-lian, LIU Jian-ping, LI Zheng-qi, LU Fei, CHEN Chao. Research on measurement of spectral radiance luminance base on hightemperature blackbody[J]. Journal of Applied Optics, 2006, 27(supp): 71-75.
  • Cited by

    Periodical cited type(2)

    1. 杨潇,孙帮勇. 双头增强与非均匀校正的水下图像增强算法. 应用光学. 2024(02): 354-364 . 本站查看
    2. 朱海荣,蔡鹏,张春磊,张晨阳,陈新东. 海水环境光场水下辐照度测量光学设计. 兵器装备工程学报. 2024(11): 298-303 .

    Other cited types(2)

Catalog

    Article views (115) PDF downloads (59) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return