HE Xu, YANG Hao, MA Yuncan, LI Jun, JIANG Jun, MENG Limin, YE Yan. Core structure of terahertz filter fabricated by femtosecond laser with high repetition rate[J]. Journal of Applied Optics, 2024, 45(3): 514-521. DOI: 10.5768/JAO202445.0310004
Citation: HE Xu, YANG Hao, MA Yuncan, LI Jun, JIANG Jun, MENG Limin, YE Yan. Core structure of terahertz filter fabricated by femtosecond laser with high repetition rate[J]. Journal of Applied Optics, 2024, 45(3): 514-521. DOI: 10.5768/JAO202445.0310004

Core structure of terahertz filter fabricated by femtosecond laser with high repetition rate

More Information
  • Received Date: September 24, 2023
  • Revised Date: November 23, 2023
  • Available Online: April 09, 2024
  • The core structure of high-frequency terahertz (THz) filter has the characteristics of cross-scale, large removal and high precision. In order to realize efficient and precise machining of core structure, the choice of machining technology is particularly important. Compared with common machining, lithography and MEMS technology, the femtosecond laser machining technology has the advantages of strong universality of materials, simple machining flow and precision machining of thin-walled structures. The core structure of THz filter with center frequency of 850 GHz was designed as input, and the machining experiment of the core structure of THz filter was carried out by femtosecond laser machining technology. Considering that the femtosecond laser with low repetition rate could not meet the actual requirements of high-efficiency machining, the high-repetition-rate femtosecond laser was selected as the machining light source, and the high-efficiency and precise machining of the core structure of high-frequency THz filter was realized under the conditions of precise design of machining strategy and precise optimization of machining parameters. The results show that the measured center frequency of the THz filter fabricated by high-repetition-rate femtosecond laser is close to the designed value. Therefore, the high-repetition-rate femtosecond laser processing technology can be used as a flexible stage in the processing of the core structure of THz filter.

  • [1]
    刘盛纲, 钟任斌. 太赫兹科学技术及其应用的新发展[J]. 电子科技大学学报,2009,38(5):481-486.

    LIU Shenggang, ZHONG Renbin. Recent development of terahertz science and technology and it's applications[J]. Journal of University of Electronic Science and Technology of China,2009,38(5):481-486.
    [2]
    郑新, 刘超. 太赫兹技术的发展及在雷达和通讯系统中的应用(I), (II)[J]. 微波学报, 2010, 26(6): 1-6; 2011, 27(1): 1-5.

    ZHENG Xin, LIU Chao. Recent development of Thz technology and its application in radar and communication system (I)、(II)[J]. Journal of Microwaves, 2010, 26(6): 1-6; 2011, 27(1): 1-5.
    [3]
    DENG X, YANG H, WU Q, et al. Phase noise effects on the performance of high-order digital modulation terahertz communication system[J]. Chinese Journal of Electronics,2022,31(3):589-594. doi: 10.1049/cje.2021.00.321
    [4]
    郝万明, 尤晓蓓, 孙钢灿, 等. 超宽带太赫兹通信中天线结构设计及其波束色散影响分 析[J]. 电子与信息学报,2023,45(1):200-207.

    HAO Wanming, YOU Xiaobei, SUN Gangcan, et al. Design of antenna structure and analysis of beam split effect in ultra-band width terahertz communications[J]. Journal of Electronics & Information Technology,2023,45(1):200-207.
    [5]
    YANG H, DHAYALAN Y, SHANG X, et al. WR-3 waveguide bandpass filters fabricated using high precision CNC machining and SU-8 photoresist technology[J]. IEEE Transactions on Terahertz Science and Technology,2017,8(1):100-107.
    [6]
    孙玉洁, 段俊萍, 王雄师, 等. 多孔耦合型太赫兹波导定向耦合器的设计[J]. 红外与激光 工程,2017,46(1):263−269. doi: 10.3788/IRLA20174601.125002

    SUN Yujie, DUAN Junping, WANG Xiongshi, et al. Design of multi-hole terahertz waveguide directional couplers[J]. Infrared and Laser Engineering,2017,46(1):263−269. doi: 10.3788/IRLA20174601.125002
    [7]
    周健, 尤立星, 彭炜, 等. 太赫兹混频器技术研究进展[J]. 激光与光电子学进展,2023,60(18):139-155.

    ZHOU Jian, YOU Lixing, PENG Wei, et al. Research progress of terahertz mixer technology[J]. Laser & Optoelectronics Progress,2023,60(18):139-155.
    [8]
    常少杰, 吴振华, 黄杰, 等. 真空电子太赫兹器件研究进展[J]. 红外与毫米波学报,2022,41(1):85-102.

    CHANG Shaojie, WU Zhenhua, HUANG Jie, et al. The research progress of vacuum electron device in terahertz band[J]. Journal of Infrared and Millimeter Waves,2022,41(1):85-102.
    [9]
    SHI Z, ZHANG H, KHAN K, et al. Two-dimensional materials toward terahertz optoelectronic device applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2022,51:100473. doi: 10.1016/j.jphotochemrev.2021.100473
    [10]
    KUMAR A, GUPTA M, PITCHAPPA P, et al. Active ultrahigh-Q (0.2×106) THz topological cavities on a chip[J]. Advanced Materials,2022,34(27):2202370. doi: 10.1002/adma.202202370
    [11]
    ZHOU Q, QIU Q, HUANG Z. Graphene-based terahertz optoelectronics[J]. Optics & Laser Technology,2023,157:108558.
    [12]
    JIANG L, WANG A D, LI B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nano fabrication: modeling, method, measurement and application[J]. Light: Science & Applications,2018,7(2):17134.
    [13]
    高炳攀, 林炎章, 陈盈, 等. 飞秒激光微加工制备无衬底太赫兹带通滤波器[J]. 激光与光电子学进展,2018,55(2):360-365.

    GAO Bingpan, LIN Yanzhang, CHEN Ying, et al. Substrateless terahertz band-pass filters fabricated by femtosecond laser micro-machining[J]. Laser & Optoelectronics Progress,2018,55(2):360-365.
    [14]
    陈燕青, 高炳攀, 林炎章, 等. 飞秒激光微加工制备金属线栅太赫兹偏振片[J]. 中国激光,2018,45(8):93-98. doi: 10.3788/CJL201845.0802005

    CHEN Yanqing, GAO Bingpan, LIN Yanzhang, et al. Metal wire grid terahertz polarizer fabricated by femtosecond laser micro-machining[J]. Chinese Journal of Lasers,2018,45(8):93-98. doi: 10.3788/CJL201845.0802005
    [15]
    陈盈, 王杰, 高焘, 等. 飞秒激光微加工制备大尺寸无衬底太赫兹线栅偏振器[J]. 激光与光电子学进展,2020,57(11):300-304.

    CHEN Ying, WANG Jie, GAO Tao, et al. Fabrication of large-scale free-standing terahertz wire grid polarizer by femtosecond laser micro-machining[J]. Laser & Optoelectronics Progress,2020,57(11):300-304.
    [16]
    “我国激光技术与应用2035发展战略研究”项目综合组. 我国激光技术与应用2035发展战略研究[J]. 中国工程科学,2020,22(3):1-6. doi: 10.15302/J-SSCAE-2020.03.001

    Research group of strategic research on China's laser technology and its application by 2035. Strategic research on china's laser technology and its application by 2035[J]. Strategic Study of CAE,2020,22(3):1-6. doi: 10.15302/J-SSCAE-2020.03.001
    [17]
    刘军, 曾志男, 梁晓燕, 等. 超快超强激光及其科学应用发展趋势研究[J]. 中国工程科学,2020,22(3):42-48. doi: 10.15302/J-SSCAE-2020.03.007

    LIU Jun, ZENG Zhinan, LIANG Xiaoyan, et al. Development trend of ultrafast and ultraintense lasers and their scientific application[J]. Strategic Study of CAE,2020,22(3):42-48. doi: 10.15302/J-SSCAE-2020.03.007
    [18]
    杨泽南, 许骏杰, 赵婉蓉, 等. 基于锥束CT的飞秒激光加工气膜孔几何特征测量及表征[J]. 航空动力学报,2023,38(5):1198-1209.

    YANG Zenan, XU Junjie, ZHAO Wanrong, et al. Measurement and characterization of geometric features of femtosecond laser of filmhole based on cone beam CT[J]. Journal of Aerospace Power,2023,38(5):1198-1209.
    [19]
    郭敏超, 王明娣, 张胜江, 等. FR-4覆铜板飞秒激光微孔加工工艺研究[J]. 中国激光,2020,47(12):135-143. doi: 10.3788/CJL202047.1202008

    GUO Minchao, WANG Mingdi, ZHANG Shengjiang, et al. Techniques for femtosecond laser processing of micro-holes in FR-4 copper clad laminate[J]. Chinese Journal of Lasers,2020,47(12):135-143. doi: 10.3788/CJL202047.1202008
    [20]
    刘方祥, 孙树峰, 王德祥, 等. 飞秒激光直写PMMA制备微流道的工艺技术研究[J]. 应用光学,2018,39(3):442-446.

    LIU Fangxiang, SUN Shufeng, WANG Dexiang, et al. Research on technology with femtosecond laser direct-writing on PMMA microchannels[J]. Journal of Applied Optics,2018,39(3):442-446.
    [21]
    何煦, 马云灿, 李军, 等. 非平整表面飞秒激光加工方法及应用[J]. 激光与光电子学进展,2023,60(17):301-310.

    HE Xu, MA Yuncan, LI Jun, et al. Method and application of femtosecond laser processing on non-flat surfaces[J]. Laser & Optoelectronics Progress,2023,60(17):301-310.
  • Related Articles

    [1]SUN Shaobin, XU Junqi, SU Junhong, LI Yang, WANG Tong, LIU Zheng. Influence of PEG content on optical band gap and laser damage characteristics of porous films[J]. Journal of Applied Optics, 2024, 45(4): 841-848. DOI: 10.5768/JAO202445.0407002
    [2]YUAN Shihao, XU Junqi, SU Junhong, LU Jiaxi, REN Sen. Review of preparation methods of laser films with high damage threshold[J]. Journal of Applied Optics, 2023, 44(6): 1185-1194. DOI: 10.5768/JAO202344.0610004
    [3]WANG Yan, HANG Lingxia. Relationship between gradient of antireflection film and laser induced damage threshold[J]. Journal of Applied Optics, 2019, 40(1): 143-149. DOI: 10.5768/JAO201940.0107003
    [4]Hang Liang-yi, Xu Jun-qi, Cheng Yao-jin, Su Jun-hong. Preparation of LaTiO3 films and process optimization[J]. Journal of Applied Optics, 2015, 36(6): 948-954. DOI: 10.5768/JAO201536.0604003
    [5]Li Peng, Hang Ling-xia, Xu Jun-qi, Li Lin-jun. Laser-induced damage resist properties of monolayer optical thin films prepared by PECVD technology[J]. Journal of Applied Optics, 2015, 36(2): 206-213. DOI: 10.5768/JAO201536.0201008
    [6]HAN Wen-qin, GUO Xi-qing, XIE Guan-bao, SUN Peng-fei, YANG Jing-xian, TANG Ya-jun. Pulse laser damage characteristic measurement of VO2 optical thin film[J]. Journal of Applied Optics, 2013, 34(4): 690-694.
    [7]OUYANG Sheng, LIU Zhi-chao, XU Qiao. Surface damage precursors in triple-frequency fused silica[J]. Journal of Applied Optics, 2011, 32(6): 1257-1262.
    [8]LIU Zhi-chao, WEI Yao-wei, CHEN Song-lin, MA Ping. Characterization of 1 064 nm laser induced damagein ALD optical film[J]. Journal of Applied Optics, 2011, 32(2): 373-376.
    [9]LI Qian, HANG Ling-xia, XU Jun-qi. Ellipsometric analysis of optical constants for diamond-like carbon films deposited by UBMS[J]. Journal of Applied Optics, 2009, 30(1): 105-109.
    [10]LOU Jun, SU Jun-hong, XU Jun-qi, XIE Song-lin. Laser-induced damage threshold detection for optical thin films by scattered light of He-Ne laser[J]. Journal of Applied Optics, 2008, 29(1): 131-135.
  • Cited by

    Periodical cited type(8)

    1. 郭栋,张树玲,甘志颖,郭峰. 类金刚石薄膜膜基结合强度优化技术研究进展. 宁夏工程技术. 2022(01): 84-91 .
    2. 张旺玺. 化学气相沉积法合成金刚石的研究进展. 陶瓷学报. 2021(04): 537-546 .
    3. 李党娟,王娜,吴慎将,苏俊宏. 不同工艺参数下DLC薄膜的应力状态. 真空科学与技术学报. 2020(05): 421-426 .
    4. 胡志方. 简述金刚石人工合成进展. 冶金与材料. 2020(03): 142+145 .
    5. 黄彪,张而耕,周琼,陈永康. 石墨靶溅射时间对Ta-C涂层性能的影响. 陶瓷学报. 2019(03): 318-324 .
    6. 丁雪兴,赵海红,金海俊,魏龙,金良. 干气密封两种典型螺旋角与DLC薄膜的摩擦性能. 石油化工高等学校学报. 2018(04): 82-89 .
    7. 张而耕,黄彪,何澄,周琼. 新型Ta-C涂层铣刀切削性能研究. 表面技术. 2017(06): 125-130 .
    8. 董中林,于振华,施毅,李琦,杨木,王永庆,干蜀毅. 脉冲偏压对磁过滤阴极电弧离子镀ta-C薄膜性能的影响. 真空科学与技术学报. 2017(01): 78-82 .

    Other cited types(22)

Catalog

    Article views (122) PDF downloads (44) Cited by(30)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return