Citation: | WANG Xueqi, HE Zehao, ZHU Qiaofen, CAO Liangcai. Image quality evaluation method and system for head-mounted three-dimensional display[J]. Journal of Applied Optics, 2024, 45(3): 598-607. DOI: 10.5768/JAO202445.0301002 |
Head-mounted three-dimensional (3D) display device is a common presentation carrier of human-computer interaction interfaces in the fields of virtual reality, augmented reality and metaverse. Currently, the image quality evaluation methods and systems for head-mounted 3D display are insufficient. A 3D image quality evaluation theory based on the human visual system was proposed, and a 3D image quality evaluation method and the corresponding system were designed. Some parameters including depth reconstruction, distortion, ultimate resolution, and field angle were quantitatively evaluated. The depth reconstruction was tested based on binocular vision principle, the distortion was expressed by curvatures and polynomial transformations of specific points, the ultimate resolution was evaluated by MTF and valley-to-peak ratio of patterns, and the field angle was measured based on pinhole imaging method. In the test of two head-mounted display devices, the relative error of depth reconstruction is smaller than 3.5%, the distortion is smaller than 3%, and the field angle are 77°1′44″ and 86°56′26″, respectively. The evaluation results are highly consistent with the subjective perception of the human eyes. The proposed method and system have high engineering applicability, which are expected to play an important role in the quality assessment and design improvement of the head-mounted 3D display.
[1] |
刘锴, 华鉴瑜, 陈林森, 等. 虚实融合裸眼3D显示现状与展望[J]. 激光与光电子学进展,2022,59(20):57-68.
LIU Kai, HUA Jianyu, CHEN Linsen, et al. Present situation and prospect of glasses-free augmented reality 3D display[J]. Laser & Optoelectronics Progress,2022,59(20):57-68.
|
[2] |
FAN Y C, LEE C M, LEE M Y, et al. 3D display and interactive technology in metaverse[J]. ITE Transactions on Media Technology and Applications,2022,10(4):179-189. doi: 10.3169/mta.10.179
|
[3] |
朱富丽, 杨磊, 申玉斌, 等. 基于眼动特征的视觉交互状态分类方法研究[J]. 航天医学与医学工程,2021,34(6):426-431.
ZHU Fuli, YANG Lei, SHEN Yubin, et al. Research on visual interaction states classification method based on eye movement characteristics[J]. Space Medicine & Medical Engineering,2021,34(6):426-431.
|
[4] |
MYSTAKIDIS S. Metaverse[J]. Encyclopedia,2022,2(1):486-497. doi: 10.3390/encyclopedia2010031
|
[5] |
ZHAO Y, JIANG J, CHEN Y, et al. Metaverse: perspectives from graphics, interactions and visualization[J]. Visual Informatics,2022,6(1):56-61. doi: 10.1016/j.visinf.2022.03.002
|
[6] |
王文喜, 周芳, 万月亮, 等. 元宇宙技术综述[J]. 工程科学学报,2022,44(4):744-756.
WANG Wenxi, ZHOU Fang, WAN Yueliang, et al. A survey of metaverse technology[J]. Chinese Journal of Engineering,2022,44(4):744-756.
|
[7] |
张汉乐, 邢妍, 胡晓帅, 等. 面向元宇宙的集成成像3D显示技术进展[J]. 指挥与控制学报,2022,8(3):239-248.
ZHANG Hanle, XING Yan, HU Xiaoshuai, et al. Metaverse-oriented integral imaging 3D display technology[J]. Journal of Command and Control,2022,8(3):239-248.
|
[8] |
曹良才, 何泽浩, 刘珂瑄, 等. 元宇宙中的动态全息三维显示: 发展与挑战[J]. 红外与激光工程,2022,51(1):267-281.
CAO Liangcai, HE Zehao, LIU Kexuan, et al. Progress and challenges in dynamic holographic 3D display for the metaverse[J]. Infrared and Laser Engineering,2022,51(1):267-281.
|
[9] |
何泽浩, 隋晓萌, 赵燕, 等. 基于全息光学的虚拟现实与增强现实技术进展[J]. 科技导报,2018,36(9):8-17.
HE Zehao, SUI Xiaomeng, ZHAO Yan, et al. Advances in virtual reality and augmented reality technology based on holographic optics[J]. Science & Technology Review,2018,36(9):8-17.
|
[10] |
SONG W, WANG Y, CHENG D, et al. Light field head-mounted display with correct focus cue using micro structure array[J]. Chinese Optics Letters,2014,12(6):060010-1-4. doi: 10.3788/COL201412.060010
|
[11] |
SONG W, CHENG D, DENG Z, et al. Design and assessment of a wide FOV and high-resolution optical tiled head-mounted display[J]. Applied optics,2015,54(28):15-22. doi: 10.1364/AO.54.000E15
|
[12] |
ITOH Y, LANGLOTZ T, SUTTON J, et al. Towards indistinguishable augmented reality: a survey on optical see-through head-mounted displays[J]. ACM Computing Surveys,2021,54(6):1-36.
|
[13] |
KI-HYUK Y, MIN-KOO K, HWASUN L, et al. Autostereoscopic 3D display system with dynamic fusion of the viewing zone under eye tracking: principles, setup, and evaluation (Invited)[J]. Applied Optics,2018,57(1):A101-A117. doi: 10.1364/AO.57.00A101
|
[14] |
KUMAGAI K, YAMAGUCHI I, HAYASAKI Y. Three-dimensionally structured voxels for volumetric dis-play[J]. Optics Letters,2018,43(14):3341-3344. doi: 10.1364/OL.43.003341
|
[15] |
SONG W, ZHU Q, HUANG T, et al. Volumetric display based on multiple mini-projectors and a rotating sc-reen[J]. Optical Engineering,2015,54(1):013103. doi: 10.1117/1.OE.54.1.013103
|
[16] |
王琼华, 邓欢. 集成成像3D拍摄与显示方法[J]. 液晶与显示, 2014, 29(2): 153-158.
WANG Qionghua, DENG Huan. 3D pickup and display method of integral imaging[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(2): 153-158.
|
[17] |
CHEN D, SANG X, YU X, et al. Performance improvement of compressive light field display with the viewing-position-dependent weight distribution[J]. Optics Express,2016,24(26):29781-29793. doi: 10.1364/OE.24.029781
|
[18] |
HUANG H, HUA H. Systematic characterization and optimization of 3D light field displays[J]. Optics Express,2017,25(16):18508-18525. doi: 10.1364/OE.25.018508
|
[19] |
YANG L, SANG X, YU X, et al. A crosstalk-suppressed dense multi-view light-field display based on real-time light-field pickup and reconstruction[J]. Optics Express,2018,26(26):34412-34427. doi: 10.1364/OE.26.034412
|
[20] |
MOON E, KIM M, ROH J, et al. Holographic head-mounted display with RGB light emitting diode light source[J]. Optics Express,2014,22(6):6526-6534. doi: 10.1364/OE.22.006526
|
[21] |
CHEN J, CHU D. Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications[J]. Optics Express,2015,23(14):18143-18155. doi: 10.1364/OE.23.018143
|
[22] |
HE Z, SUI X, CAO L. Holographic 3D display using depth maps generated by 2D-to-3D rendering appro-ach[J]. Applied Sciences,2021,11(21):9889. doi: 10.3390/app11219889
|
[23] |
BLANCHE P A. Holography and the future of 3D display[J]. Light: Advanced Manufacturing,2021,2(4):446-459.
|
[24] |
吴圣涵, 王崝, 曹良才, 等. 多路角度复用体全息三维显示技术[J]. 应用光学,2017,38(2):215-220.
WU Shenghan, WANG Zheng, CAO Liangcai, et al. Volume holographic display technology based on angular multiplexing[J]. Journal of Applied Optics,2017,38(2):215-220.
|
[25] |
周鹏程, 毕勇, 孙敏远, 等. 多平面全息三维显示及其噪声消除研究[J]. 应用光学,2014,35(6):996-1002.
ZHOU Pengcheng, BI Yong, SU Minyuan, et al. Multi-plane holographic display and its noise elimination[J]. Journal of Applied Optics,2014,35(6):996-1002.
|
[26] |
齐敏, 张向东, 吕军锋, 等. 头盔显示器效能评估分析[J]. 火力与指挥控制,2022,47(7):174-178.
QI Min, ZHANG Xiangdong, LYU Junfeng, et al. Effectiveness evaluation and analysis of helmet mounted display[J]. Fire Control & Command Control,2022,47(7):174-178.
|
[27] |
王健, 李淳, 刘英, 等. 头盔显示器光学检测系统[J]. 液晶与显示,2022,47(7):174-178.
WANG Jian, LI Chun, LIU Ying, et al. Optical evaluation system for head mounted display[J]. Chinese Journal of Liquid and Displays,2022,47(7):174-178.
|
[28] |
王孝艳, 刘楚嘉, 漆宇, 等. 基于光学传递函数的头戴显示器图像畸变检测[J]. 激光与光电子学进展,2018,55(8):327-332.
WANG Xiaoyan, LIU Chujia, QI Yu, et al. Image distortion detection of head mounted display based on optical transform function[J]. Laser & Optoelectronics Progress,2018,55(8):327-332.
|
[29] |
于阳. 头盔显示器畸变检测设备的研制[D]. 长春: 长春理工大学, 2013.
YU Yang. Research on the distortion detection equipment of HMD[D]. Changchun: Changchun University of Science and Technology, 2013.
|
[30] |
田方旭, 张军. 增强现实光学系统虚像视场角测量方法[J]. 激光与光电子学进展,2022,59(20):184-190.
TIAN Fangxu, ZHANG Jun. Measurement method of virtual in augmented reality optical systems[J]. Laser & Optoelectronics Progress,2022,59(20):184-190.
|
[31] |
ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334.
|
[32] |
何泽浩, 曹良才. 面向沉浸式元宇宙的显示、交互和应用: 进展和展望[J]. 科技导报,2023,41(5):6-14.
HE Zehao, CAO Liangcai. Display, interaction, and application for immersive metaverse: advances and prospects[J]. Science & Technology Review,2023,41(5):6-14.
|
[33] |
唐宁. 人眼视觉效果的实时模拟与渲染[D]. 上海: 上海交通大学, 2015.
TANG Ning. Real-time human vision simulation and rendering[D]. Shanghai: Shanghai Jiaotong University, 2015.
|
[1] | HE Xuelan, LI Jiahui, WANG Tiebin, LI Wenchao, XING Jian, CUI Shuanglong, MENG Lingzhi. Research on three dimensional refractive index measurement of non-axisymmetric fiber optics[J]. Journal of Applied Optics, 2024, 45(6): 1314-1320. DOI: 10.5768/JAO202445.0608001 |
[2] | ZHANG Jing, LI Yongqian. Temperature sensing characteristics based on coreless- few mode-coreless optical fiber structure[J]. Journal of Applied Optics, 2022, 43(1): 167-170. DOI: 10.5768/JAO202243.0108003 |
[3] | Lu Weitao, Zhang Shuanmin, Chen Anfeng, Qiang Wei, Wang Cheng, Wang Jian. High sensitive fiber strain sensor[J]. Journal of Applied Optics, 2017, 38(5): 848-851. DOI: 10.5768/JAO201738.0508002 |
[4] | Jia Zhenan, Duan Weiwei, Liu Yinggang, Zhang Jingle, Li Kang. Tapered multi-mode fiber temperature sensor based on simultaneous response of wavelength and intensity[J]. Journal of Applied Optics, 2017, 38(2): 331-335. DOI: 10.5768/JAO201738.0208001 |
[5] | Zhou Jing-hui, Sun Hao, Yang Shen, Hu Man-li, Ye Zeng-liang, Zhou Li-bin, Zhang Xiao-lei, Yuan Liu-tong. Optical fiber refractive index sensor with temperature calibration ability[J]. Journal of Applied Optics, 2015, 36(1): 140-144. DOI: 10.5768/JAO201536.0108001 |
[6] | GAO Ping-an, RONG Qiang-zhou, SUN Hao, HU Man-li. High-sensitive fiber-optic refractometer constructed by core-diameter-mismatch welding[J]. Journal of Applied Optics, 2013, 34(3): 542-546. |
[7] | WANG Hong-liang, ZHANG Jing, QIAO Xue-guang, WANG Yu. Study on strain and temperature cross sensitivity of fiber Bragg grating sensor[J]. Journal of Applied Optics, 2008, 29(5): 804-807. |
[8] | YANG Peng-ling, WANG Qun-shu, FENG Guo-bin, LIU Fu-hua, CHENG Jian-ping. A dynamic strain sensor with fiber Bragg gratings[J]. Journal of Applied Optics, 2008, 29(supp): 105-108. |
[9] | YU Da-kuan, QIAO Xue-guang, JIA Zhen-an, WANG Min. Fiber Bragg grating sensor for detecting temperature and flowvelocity[J]. Journal of Applied Optics, 2006, 27(3): 228-231. |
[10] | HAO Ai-hua, MAO Zhi-li, HE Feng-tao. Refractive Index Profile Measurement of Singlemode and Multimode Fiber[J]. Journal of Applied Optics, 2005, 26(5): 41-044. |
1. |
朱朝阳,叶伟,彭慧龙,陈昱坤. 倍增层Si浓度对β-FeSi_2/Si红外探测器性能的影响研究. 河南科技. 2025(01): 73-77 .
![]() | |
2. |
方小坤,叶伟,权贝贝,朱朝阳,萧生. Ⅰ型倍增层对异质SAM结构InSb-APD红外探测器性能的影响. 应用光学. 2024(03): 659-664 .
![]() |