Citation: | HE Weilin, YANG Zhongming, ZHANG Xingyu, LIU Zhaojun. Review of phase aberration correction technology of digital holographic microscopy[J]. Journal of Applied Optics, 2024, 45(2): 249-261. DOI: 10.5768/JAO202445.0209002 |
Digital holographic microscopy is a combination of digital holography and microscopy, combining the advantages of both technologies, which provides a non-destructive, label-free, accurate and near real-time measurement method for quantitative 3D measurement in the micro-nano field. However, phase aberrations are additionally introduced due to component defects, misalignment, and environmental disturbances in the digital holographic microscopy measurement results. To obtain accurate quantitative phase measurement results, the origin and principal components of aberrations must be analyzed, and then compensate and corrected for aberrations. This review began with an introduction to the main sources and effects of aberrations in digital holographic microscopy imaging measurement. Then, the existing aberration correction methods were reviewed based on their different workflows and characteristics. Finally, the future development direction of aberration correction was prospected, which would provide useful references for researchers engaged in digital holographic detection research.
[1] |
FLORES-MORENO J M, TORRE-IBARRA M D L, HERNANDEZ-MONTES M D S, et al. DHI contemporary methodologies: a review and frontiers[J]. Optics and Lasers in Engineering,2020,135:106184. doi: 10.1016/j.optlaseng.2020.106184
|
[2] |
PARK Y, DEPEURSINGE C, POPESCU G. Quantitative phase imaging in biomedicine[J]. Nature Photonics,2018,12(10):578-589. doi: 10.1038/s41566-018-0253-x
|
[3] |
YANG S A, YOON J, KIM K, et al. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease[J]. Cytometry Part A,2017,91(5):510-518. doi: 10.1002/cyto.a.23110
|
[4] |
FERRARO P, MICCIO L, GRILLI S, et al. Quantitative phase microscopy of microstructures with extended measurement range and correction of chromatic aberrations by multiwavelength digital holography[J]. Optics Express,2007,15(22):14591-14600. doi: 10.1364/OE.15.014591
|
[5] |
VERPILLAT F, JOUD F, DESBIOLLES P, et al. Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles[J]. Optics Express,2011,19(27):26044-26055. doi: 10.1364/OE.19.026044
|
[6] |
SMITH C D, BIEWER T M, GEBHART T E, et al. Measurements of dynamic surface changes by digital holography for in situ plasma erosion applications[J]. Review of Scientific Instruments,2021,92(3):033504. doi: 10.1063/5.0040566
|
[7] |
PAVILLON N, BENKE A, BOSS D, et al. Cell morphology and intracellular ionic homeostasis explored with a multimodal approach combining epifluorescence and digital holographic microscopy[J]. Journal of Biophotonics,2010,3(7):432-436. doi: 10.1002/jbio.201000018
|
[8] |
ZUO C, CHEN Q, QU W, et al. Phase aberration compensation in digital holographic microscopy based on principal component analysis[J]. Optics Letters,2013,38(10):1724-1726. doi: 10.1364/OL.38.001724
|
[9] |
WANG S, ZHAO Y, LI S. Research of aerial camera focal pane micro-displacement measurement system based on Michelson interferometer[C]//7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. Bellingham, USA: SPIE, 2014, 9282: 552-558.
|
[10] |
史少辉, 封顺珍, 牛萍, 等. 迈克耳孙干涉仪测量波长实验的研究及仿真[J]. 大学物理,2019,38(9):24-28.
SHI Shaohui, FENG Shunzhen, NIU Ping, et al. Research and simulation of wavelength measurement experiment using Michelson interference[J]. College Physics,2019,38(9):24-28.
|
[11] |
ZHANG J, SUN H, WANG R, et al. Simultaneous measurement of refractive index and temperature using a michelson fiber interferometer with a hi-bi fiber probe[J]. IEEE Sensors Journal,2013,13(6):2061-2065. doi: 10.1109/JSEN.2013.2237898
|
[12] |
KATKOVNIK V, SHEVKUNOV I A, PETROV N V, et al. Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase[J]. Optics Letters,2015,40(10):2417-2420. doi: 10.1364/OL.40.002417
|
[13] |
DENG D, PENG J, QU W, et al. Simple and flexible phase compensation for digital holographic microscopy with electrically tunable lens[J]. Applied Optics,2017,56(21):6007-6014. doi: 10.1364/AO.56.006007
|
[14] |
ZHANG T, YAMAGUCHI I. Three-dimensional microscopy with phase-shifting digital holography[J]. Optics Letters,1998,23(15):1221-1223. doi: 10.1364/OL.23.001221
|
[15] |
TAHARA T, ITO K, KAKUE T, et al. Parallel phase-shifting digital holographic microscopy[J]. Biomed Opt Express,2010,1(2):610-616. doi: 10.1364/BOE.1.000610
|
[16] |
CUCHE E, MARQUET P, DEPEURSINGE C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography[J]. Applied Optics,2000,39(23):4070-4075. doi: 10.1364/AO.39.004070
|
[17] |
CUCHE E, DEPEURSINGE C, MARQUET P. Spatial filtering and aperture apodization in digital holographic microscopy[C]//Biomedical Optical Spectroscopy and Diagnostics. Washington, USA: Optica Publishing Group, 2000: 411-413.
|
[18] |
SHAKED N T, ZHU Y, RINEHART M T, et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Optics Express,2009,17(18):15585-15591. doi: 10.1364/OE.17.015585
|
[19] |
HUANG L, YAN L, CHEN B, et al. Phase aberration compensation of digital holographic microscopy with curve fitting preprocessing and automatic background segmentation for microstructure testing[J]. Optics Communications,2020,462:125311. doi: 10.1016/j.optcom.2020.125311
|
[20] |
LIU Y, WANG Z, HUANG J. Recent progress on aberration compensation and coherent noise suppression in digital holography[J]. 2018, 8(3): 444.
|
[21] |
MIN J, YAO B, GAO P, et al. Wave-front curvature compensation of polarization phase-shifting digital holography[J]. Optik,2012,123(17):1525-1529. doi: 10.1016/j.ijleo.2011.09.018
|
[22] |
WANG G, WANG H, ZHAO J, et al. Automatic compensation for phase aberration in digital holographic microscopy[J]. SPIE,2008,6832:277-285.
|
[23] |
MALACARA D. Optical shop testing[M]. 3th ed, New Jersey, USA: John Wiley & Sons Inc, 2007: 498-546.
|
[24] |
LAKSHMINARAYANAN V, FLECK A. Zernike polynomials: a guide[J]. Journal of Modern Optics,2011,58(7):545-561. doi: 10.1080/09500340.2011.554896
|
[25] |
LIU F, ROBINSON B, REARDON P, et al. Analyzing optics test data on rectangular apertures using 2-D Chebyshev polynomials[J]. Optical Engineering,2011,50(4):043609. doi: 10.1117/1.3569692
|
[26] |
YANG Z, LIU Z, HE W, et al. Automatic high order aberrations correction for digital holographic microscopy based on orthonormal polynomials fitting over irregular shaped aperture[J]. Journal of Optics,2019,21(4):045609. doi: 10.1088/2040-8986/ab0e63
|
[27] |
FERRARO P, DE NICOLA S, FINIZIO A, et al. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging[J]. Applied Optics,2003,42(11):1938-1946. doi: 10.1364/AO.42.001938
|
[28] |
PENSIA L, DWIVEDI G, SINGH O, ET al. Crack detection in tableware items using digital holography interferometry[C]//Digital Holography and Three-Dimensional Imaging. Washington, USA: Optica Publishing Group, 2021: DTu6H. 8.
|
[29] |
DOBLAS A, HINCAPIE-ZULUAGA D, SAAVEDRA G, et al. Physical compensation of phase curvature in digital holographic microscopy by use of programmable liquid lens[J]. Applied Optics,2015,54(16):5229-5233. doi: 10.1364/AO.54.005229
|
[30] |
DOBLAS A, SÁNCHEZ-ORTIGA E, MARTÍNEZ-CORRAL M, et al. Shift-variant digital holographic microscopy: inaccuracies in quantitative phase imaging[J]. Optics Letters,2013,38(8):1352-1354. doi: 10.1364/OL.38.001352
|
[31] |
SáNCHEZ-ORTIGA E, DOBLAS A, SAAVEDRA G, et al. Off-axis digital holographic microscopy: practical design parameters for operating at diffraction limit[J]. Applied Optics,2014,53(10):2058-2066. doi: 10.1364/AO.53.002058
|
[32] |
POPESCU G, IKEDA T, DASARI R R, et al. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Opt Lett,2006,31(6):775-777. doi: 10.1364/OL.31.000775
|
[33] |
DI J, WANG K, ZHANG J, et al. Quasicommon-path digital holographic microscopy with phase aberration compensation based on a long-working distance objective[J]. Optical Engineering,2018,57(2):024108.
|
[34] |
GUO R, YAO B, GAO P, et al. Reflective point-dif fraction microscopic interferometer with long-term stability (invited paper)[J]. Chinese Optics Letters,2011,9(12):120002. doi: 10.3788/COL201109.120002
|
[35] |
CHHANIWAL V, SINGH A S G, LEITGEB R A, et al. Quantitative phase-contrast imaging with compact digital holographic microscope employing Lloyd’s mirror[J]. Optics Letters,2012,37(24):5127-5129. doi: 10.1364/OL.37.005127
|
[36] |
MA C, LI Y, ZHANG J, et al. Lateral shearing common-path digital holographic microscopy based on a slightly trapezoid Sagnac interferometer[J]. Optics Express,2017,25(12):13659-13667. doi: 10.1364/OE.25.013659
|
[37] |
ZHENG C, ZHOU R, KUANG C, et al. Digital micromirror device-based common-path quantitative phase imaging[J]. Optics Letters,2017,42(7):1448-1451. doi: 10.1364/OL.42.001448
|
[38] |
LIU Y, WANG Z, LI J, et al. Phase based method for location of the centers of side bands in spatial frequency domain in off-axis digital holographic microcopy[J]. Optics and Lasers in Engineering,2016,86:115-124. doi: 10.1016/j.optlaseng.2016.05.018
|
[39] |
LI J, WANG Z, GAO J, et al. Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy[J]. Optical Engineering,2014,54(3):031103. doi: 10.1117/1.OE.54.3.031103
|
[40] |
DU Y, FENG G, LI H, et al. Accurate carrier-removal technique based on zero padding in Fourier transform method for carrier interferogram analysis[J]. Optik,2014,125(3):1056-1061. doi: 10.1016/j.ijleo.2013.07.145
|
[41] |
左超. 一种基于频谱亚像素平移的倾斜像差校正补偿方法: CN201811292259.2[P]. 2020-11-06.
ZUO Chao. A tilt aberration correction and compensation method based on spectral sub-pixel translation: CN201811292259.2[P]. 2020-11-06.
|
[42] |
ZHANG X, SUN J, ZHANG Z, et al. Multi-step phase aberration compensation method based on optimal principal component analysis and subsampling for digital holographic microscopy[J]. Applied Optics,2019,58(2):389-397. doi: 10.1364/AO.58.000389
|
[43] |
LAI X, XIAO S, XU C, et al. Aberration-free digital holographic phase imaging using the derivative-based principal component analysis[J]. Journal of Biomedical Optics,2021,26(4):046501.
|
[44] |
COLOMB T, CUCHE E, CHARRIèRE F, et al. Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation[J]. Applied Optics,2006,45(5):851-863. doi: 10.1364/AO.45.000851
|
[45] |
DI J, ZHAO J, SUN W, et al. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting[J]. Optics Communications,2009,282(19):3873-3877. doi: 10.1016/j.optcom.2009.06.049
|
[46] |
COLOMB T, MONTFORT F, KüHN J, et al. Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy[J]. Journal of the Optical Society of America A,2006,23(12):3177-3190. doi: 10.1364/JOSAA.23.003177
|
[47] |
LIU S, LIAN Q, QING Y, et al. Automatic phase aberration compensation for digital holographic microscopy based on phase variation minimization[J]. Optics Letters,2018,43(8):1870-1873. doi: 10.1364/OL.43.001870
|
[48] |
ÖHMAN J, SJÖDAHL M. Improved particle position accuracy from off-axis holograms using a Chebyshev model[J]. Applied Optics,2018,57(1):A157-A163. doi: 10.1364/AO.57.00A157
|
[49] |
NGUYEN T, BUI V, LAM V, et al. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection[J]. Optics Express,2017,25(13):15043-15057. doi: 10.1364/OE.25.015043
|
[50] |
MA S, FANG R, LUO Y, et al. Phase-aberration compensation via deep learning in digital holographic microscopy[J]. Measurement Science and Technology,2021,32(10):105203. doi: 10.1088/1361-6501/ac0216
|
[51] |
XIAO W, XIN L, CAO R, et al. Sensing morphogenesis of bone cells under microfluidic shear stress by holographic microscopy and automatic aberration compensation with deep learning[J]. Lab on a Chip,2021,21(7):1385-1394. doi: 10.1039/D0LC01113D
|