BI Junbo, LI Guoping, LI Meng, LIU Haining. Yarn paper tube classification method with multi-linked fusion optimized template matching[J]. Journal of Applied Optics, 2024, 45(2): 365-372. DOI: 10.5768/JAO202445.0202003
Citation: BI Junbo, LI Guoping, LI Meng, LIU Haining. Yarn paper tube classification method with multi-linked fusion optimized template matching[J]. Journal of Applied Optics, 2024, 45(2): 365-372. DOI: 10.5768/JAO202445.0202003

Yarn paper tube classification method with multi-linked fusion optimized template matching

More Information
  • Received Date: May 11, 2023
  • Revised Date: August 26, 2023
  • Available Online: February 28, 2024
  • The automatic classification and recognition of conical yarn paper tubes has been a hot topic in the intelligent manufacturing of this component. A yarn paper tube classification method based on multiple fusion optimized template matching was proposed to address the problems that traditional image classification methods could not balance speed and accuracy, as well as high cost of deep learning, difficult deployment, and high hardware requirements. Several improved algorithms and strategies were adopted and three times data dimensionality reduction was used to accelerate the template matching speed. First, the optimization algorithm, successive elimination algorithm (SEA) used for motion estimation was used in template matching, and the threshold of this algorithm was improved to adaptive threshold for enhancing the robustness of the algorithm. Then, the wavelet pyramid was used to further reduce the amount of operations to improve its speed. Finally, the cross gray scale feature was used instead of the traditional sum of absolute differences (SAD) algorithm to calculate the performance index, and the strategy of stopping the iterative search in advance was used to further filter the data and set the cumulative error threshold to stop the search in advance. The matching experiments show that the improved algorithm guarantees the accuracy and the matching speed reaches about 0.126 s. The comparison and ablation experiments show that, under the premise of ensuring the accuracy, the speed of the algorithm is nearly 11 times higher than that of the traditional SAD algorithm, compared with some other classical methods in the speed are also improved, which verifies the effectiveness of the method.

  • [1]
    郭明瑞, 韩晨晨, 卢雨正, 等. 浅谈纺纱流程智能化发展的现状[J]. 棉纺织技术,2020,48(5):81-84. doi: 10.3969/j.issn.1001-7415.2020.05.020

    GUO Mingrui, HAN Chenchen, LU Yuzheng, et al. Disscussion of spinning process intelligent development status[J]. Cotton Textile Technology,2020,48(5):81-84. doi: 10.3969/j.issn.1001-7415.2020.05.020
    [2]
    DESAI B K, POTDAR D, PATEL M P. Template matching technique using enhanced SAD technique[J]. International Journal of Engineering Research & Technology,2014,3(5):1371-1376.
    [3]
    冯炜. 图像匹配算法研究[D]. 重庆: 重庆师范大学, 2011.

    FENG Wei. Image matching algorithms research[D]. Chongqing: Chongqing Normal University, 2011.
    [4]
    LIU B, FAN Y, ZHANG L, et al. Image matching algorithm based on improved SSDA[C]// 2021 IEEE 4th International Conference on Electronics Technology (ICET). New York: IEEE, 2021: 1290-1294.
    [5]
    于晓东, 陈幼平, 李安定, 等. 基于投影特征的快速图像匹配算法[J]. 机械与电子,2013(3):41-44.

    YU Xiaodong, CHEN Youping, LI Anding, et al. Fast image matching algorithm based on projection[J]. Machinery & Electronics,2013(3):41-44.
    [6]
    王振江, 吴健, 林方全. 一种结合快速灰度投影与SSDA的图像匹配方法[J]. 计算机工程与应用,2011,47(33):195-197.

    WANG Zhenjiang, WU Jian, LIN Fangquan. Image matching method based on fast gray value projection and SSDA[J]. Computer Engineering and Applications,2011,47(33):195-197.
    [7]
    王立新, 刘彤宇, 李阳. SSDA图像匹配算法的研究及实现[J]. 光电技术应用,2005,20(3):53-55.

    WANG Lixin, LIU Tongyu, LI Yang. Research and implementation of SSDA[J]. Electro-Optic Technology Application,2005,20(3):53-55.
    [8]
    刘磊, 王志良, 刘冀伟, 等. 一种改进的快速全局运动估计算法[J]. 计算机工程,2010,36(20):28-31.

    LIU Lei, WANG Zhiliang, LIU Jiwei, et al. Improved fast global motion estimation algorithm[J]. Computer Engineering,2010,36(20):28-31.
    [9]
    陈皓, 马彩文, 陈岳承, 等. 基于灰度统计的快速模板匹配算法[J]. 光子学报, 2009, 38(6): 1586-1590.

    CHEN Hao, MA Caiwen, CHEN Yuecheng, et al. Fast template matching arithmetic based on image gray statistic[J]. Acta Phoyonica Sinica, 2009, 38(6): 1586-1590.
    [10]
    郑剑斌, 郑力新, 朱建清. 一种基于灰度的快速模板匹配方法[J]. 现代计算机(专业版),2018(26):52-56.

    ZHENG Jianbin, ZHENG Lixin, ZHU Jianqing. A fast template matching method based on gray level[J]. Modern Computer,2018(26):52-56.
    [11]
    吴鹏, 徐洪玲, 宋文龙. 结合小波金字塔的快速NCC图像匹配算法[J]. 哈尔滨工程大学学报,2017,38(5):791-796.

    WU Peng, XU Hongling, SONG Wenlong. A fast NCC image matching algorithm based on wavelet pyramid search strategy[J]. Journal of Harbin Engineering University,2017,38(5):791-796.
    [12]
    WANG Y, WU D. An improved adaptive SSDA based on wavelet-pyramid[J]. AIP Conference Proceedings,2017,1834(1):040022.
    [13]
    朱程辉, 何勇, 王金玲. 基于小波金字塔的快速图像匹配算法[J]. 微计算机信息,2010,26(10):127-128.

    ZHU Chenghui, HE Yong, WANG Jinling. A fast stereo matching algorithm based on wavelet pyramid[J]. Microcomputer Information,2010,26(10):127-128.
    [14]
    CUI Z, QI W, LIU Y. A fast image template matching algorithm based on normalized cross correlation[J]. Journal of Physics,2020,1693(1):012163. doi: 10.1088/1742-6596/1693/1/012163
    [15]
    李子印, 许斌, 陈立峰. 基于自适应步长选择的NCC图像匹配算法[J]. 光电工程,2013,40(10):77-84.

    LI Ziyin, XU Bin, CHEN Lifeng. Normalized cross correlation image matching algorithm based on adaptive step size[J]. Opto-Electronic Engineering,2013,40(10):77-84.
    [16]
    刘晓光, 陈曦, 陈政伟, 等. 基于图像灰度的SSDA匹配算法[J]. 航空计算技术,2010,40(1):54-57.

    LIU Xiaoguang, CHEN Xi, CHEN Zhengwei, et al. Research on SSDA matching algorithm based on image grey scale[J]. Aeronautical Computing Technique,2010,40(1):54-57.
  • Related Articles

    [1]WANG Kai, LOU Shuli, WANG Yan. Small object detection algorithm based on improved YOLOv3[J]. Journal of Applied Optics, 2024, 45(4): 732-740. DOI: 10.5768/JAO202445.0402002
    [2]WANG Xichen, PENG Fulun, LI Yexun, ZHANG Junju. Infrared target detection algorithm based on improved Faster R-CNN[J]. Journal of Applied Optics, 2024, 45(2): 346-353. DOI: 10.5768/JAO202445.0202001
    [3]JIA Pengtao, HOU Changmin, LI Na. Improved ViBe moving target detection algorithm in complex background[J]. Journal of Applied Optics, 2023, 44(5): 1045-1053. DOI: 10.5768/JAO202344.0502005
    [4]MING Zhenxing, LYU Qinghua, MING Yue, ZENG Wei, LYU Hui, ZHANG Jie. Optimization of LED light source array based on improved particle swarm algorithm[J]. Journal of Applied Optics, 2022, 43(3): 524-531, 543. DOI: 10.5768/JAO202243.0305003
    [5]HUANG Zhanhua, CHEN Zhilin, ZHANG Hanxiao, CAO Yusheng, SHEN Muhong. Object detection and tracking algorithm based on audio-visual information fusion[J]. Journal of Applied Optics, 2021, 42(5): 867-876. DOI: 10.5768/JAO202142.0502007
    [6]WANG Fang, WANG Haiyan, KOU Tian, NIE Guangshu. Multi-dimensional feature point space infrared dim target detection method[J]. Journal of Applied Optics, 2020, 41(6): 1268-1276. DOI: 10.5768/JAO202041.0606002
    [7]ZHU Han, LIN Li, WANG Jianhua, CHEN Jian. Multi-level detection method for PCB board defects based on improved template matching and image difference[J]. Journal of Applied Optics, 2020, 41(4): 837-843. DOI: 10.5768/JAO202041.0409806
    [8]Zhu Yuanyuan, Mu Wei, Li Guangliang, Wang Hu, Liu Tong, Gao Zedong. Hyperspectral data fusion technology for weak small sea surface target[J]. Journal of Applied Optics, 2017, 38(1): 37-41. DOI: 10.5768/JAO201738.0102001
    [9]XU Qiang, WANG Hai-yan, YANG Hai-yan, CHEN Xin, WANG Fang. Small target detecting method using dual-craft IRST image matching and fusion[J]. Journal of Applied Optics, 2013, 34(6): 1025-1029.
    [10]HONG Han-yu. Compound algorithm for restoration of infrared turbulence-degraded image[J]. Journal of Applied Optics, 2008, 29(6): 889-894.
  • Cited by

    Periodical cited type(16)

    1. 杨治,曾寰,涂起龙. 基于激光点云精确定位的输电线路无人机自主巡检系统研究. 微型电脑应用. 2024(01): 23-26+31 .
    2. 杨东晨,黄玉春,欧阳凝晖. 基于多视投影的电力杆塔点云绝缘子串快速提取. 电工电能新技术. 2024(04): 94-103 .
    3. 束庆霏. 激光点云中输电杆塔坐标的快速提取方法. 宁夏电力. 2024(01): 75-80 .
    4. 王思凡. 基于激光点云的输电杆塔坐标提取方法. 长江信息通信. 2024(07): 183-186 .
    5. 蔡东健,岳顺. 基于机载点云的电力线提取方法研究. 水利与建筑工程学报. 2023(01): 17-21 .
    6. 郑维刚,赵振威,唐红,张忠瑞,杨鑫,杨泓悦,苗腾. 基于三维激光点云的隧道电缆敷设质量参数自动检测方法. 半导体光电. 2023(03): 460-466 .
    7. 张智前,叶周润,欧鑫,肖信峰. 基于机载LiDAR系统的电力线点云提取方法研究. 合肥工业大学学报(自然科学版). 2023(08): 1103-1108 .
    8. 姚煜,蒋昌太. 基于激光点云数据的聚类算法分析应用. 传感器世界. 2023(10): 19-23 .
    9. 李海明,冯新文,吕通发,何永春,袁晓磊. 融合探测概率的电力线路点云分类方法. 电子测量技术. 2023(22): 102-108 .
    10. 李辉燕,肖新华,成俊. 网络化激光雷达的多源数据融合点云分类算法研究. 激光杂志. 2022(02): 124-128 .
    11. 吴芳,李瑜,金鼎坚,李天祺,郭华,张琦洁. 无人机三维地障信息提取技术应用于航空物探飞行轨迹规划. 自然资源遥感. 2022(01): 286-292 .
    12. 占晓明. 基于机载LiDAR的电塔点云提取与重建. 地理空间信息. 2022(04): 139-142+162 .
    13. 刘玉贤,阮明浩,闫臻. 一种基于机载激光点云的门型电塔精确提取方法. 测绘通报. 2022(07): 129-133 .
    14. 覃剑,杜珂,苏淑敏,李瑾,黎铭洪. 基于场景识别的变电站智能机器人巡视技术. 机械与电子. 2022(08): 76-80 .
    15. 白莎莎,张海洋,许世东,陈思祺,张子龙,赵长明. 基于机载激光雷达点云的雪道坡度提取算法. 应用光学. 2021(03): 481-487 . 本站查看
    16. 周钦坤,岳建平,杨恒,朱依民. 机载LiDAR数据中电力线的自动提取与重建. 测绘通报. 2020(10): 26-30+37 .

    Other cited types(7)

Catalog

    Article views (75) PDF downloads (27) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return