Citation: | DOU Mengmeng, ADAYI·Xieeryazidan. Effect of non-contact preheating on fog spots of molded infrared lenses[J]. Journal of Applied Optics, 2024, 45(2): 300-306. DOI: 10.5768/JAO202445.0201004 |
When the aspheric infrared lens is molded, the lens press-cutting time can be shortened by increasing the temperature of the molding stage, thus improving the molding efficiency. However, it is easy to produce the fog spots on the lens surface, like a bad lens. Through the analysis of the formation mechanism of lens fog spots, a non-contact preheating molding process was adopted to reduce the formation of it, and the molding experiments were carried out on a multi-station molding press, in which the elements of fog spots were detected and analyzed by using an energy spectrometer. In this molding experiment, the non-contact preheating method was used to increase the molding temperature from 206℃ to 211℃ when the preheating gap was 1 mm, with no fog spots formed on the lens surface, and the press-cutting time was shortened by 21 s. The results show that the non-contact preheating method in the multi-station molding press can effectively eliminate the formation of lens fog spots. The test results show that the volatilization of the lens material in the molding stage plays a dominant role in the formation of fog spots.
[1] |
陈冉, 薛宇飞, 吴锦鹏, 等. 红外热成像技术在炮膛测温中的应用[J]. 应用光学,2022,43(4):732-737. doi: 10.5768/JAO202243.0404003
CHEN Ran, XUE Yufei, WU Jinpeng, et al. Application of infrared thermal imaging technology in temperature measurement of gun breech[J]. Journal of Applied Optics,2022,43(4):732-737. doi: 10.5768/JAO202243.0404003
|
[2] |
刘光宇, 房丰洲. 玻璃光学元件精密模压成形技术[J]. 光学学报,2023,43(8):186-213.
LIU Guangyu, FANG Fengzhou. Precision mold forming technology for glass optical elements[J]. Acta Optica Sinica,2023,43(8):186-213.
|
[3] |
KLOCKE F, DAMBON O, ROHWERDER M. Model of coating wear degradation in precision glass molding[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9): 43-49.
|
[4] |
ZHOU T F, ZHANG C. Aspheric lens processing of chalcogenide glass via combined PGM-SPDT process[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(4) : 5855-5864.
|
[5] |
林常规, 郭小勇, 王先锋, 等. As2Se3硫系玻璃非球面镜片的精密模压成型[J]. 红外与激光工程,2019,48(7):137-143.
LIN Changgui, Guo Xiaoyong, WANG Xianfeng, et al. Precision molding of As2Se3 sulfur-based glass aspheric lenses[J]. Infrared and Laser Engineering,2019,48(7):137-143.
|
[6] |
陈国荣, 章向华. 红外夜视仪用精密模压硫系玻璃研究进展[J]. 硅酸盐学报,2004,1(5):3-7.
CHEN Guorong, ZHANG Xianghua. Research progress on precision molded sulfur glass for infrared night vision devices[J]. Journal of Silicate,2004,1(5):3-7.
|
[7] |
张治国, 孙宇轩. 摩擦系数对非球面玻璃透镜模压成型的影响[J]. 机械设计与制造,2019,10(8):34-36. doi: 10.3969/j.issn.1001-3997.2019.08.010
ZHANG Zhiguo, SUN Yuxuan. Influence of friction coefficient on molding of aspheric glass lenses[J]. Mechanical Design and Manufacturing,2019,10(8):34-36. doi: 10.3969/j.issn.1001-3997.2019.08.010
|
[8] |
ZHANG X H, GUIMOND Y, BELLEC Y. Production of complex chalcogenide glass optics by molding for thermal imaging[J]. Journal of Non-Crystalline Solids,2003,326(7):519-523.
|
[9] |
CHA D H, PARK H S, HWANG Y, et al. Experimental study of glass molding process and transcription characteristics of mold surface in molding of aspheric of glass lenses[J]. Optical Review,2011,18(2):241-242. doi: 10.1007/s10043-011-0049-4
|
[10] |
周琴. 硫系玻璃非球面透镜模压成形仿真及实验研究 [D]. 北京: 北京理工大学, 2018.
ZHOU Qin. Simulation and experimental research on molding and forming of sulfur-based glass aspheric lens [D]. Beijing: Beijing Institute of Technology, 2018.
|
[11] |
张云龙, 焦眀印, 汪志斌. 衍射光学元件精密模压模具设计及预补偿[J]. 应用光学,2022,43(4):760-765. doi: 10.5768/JAO202243.0405002
ZHANG Yunlong, JIAO Mingyin, WANG Zhibin. Design and pre-compensation of precision molding dies for diffractive optical elements[J]. Journal of Applied Optics,2022,43(4):760-765. doi: 10.5768/JAO202243.0405002
|
[12] |
尹韶辉, 王玉方, 朱科军, 等. 微小非球面玻璃透镜超精密模压成形数值模拟[J]. 光子学报,2010,39(11):2020-2024. doi: 10.3788/gzxb20103911.2020
YIN Shaohui, WANG Yufang, ZHU Kejun, et al. Numerical simulation of ultra-precision molding of tiny aspherical glass lenses[J]. Acta Photonica Sinica,2010,39(11):2020-2024. doi: 10.3788/gzxb20103911.2020
|
[13] |
唐昆, 孔明慧, 李雨典, 等. 冷却间隙对小口径双非球面硫系玻璃镜片模压成型质量的影响[J]. 红外与激光工程,2018,47(11):340-350.
TANG Kun, KONG Minghui, LI Yudian, et al. Influence of cooling gap on the molding quality of small-diameter double aspherical sulfur glass lenses[J]. Infrared and Laser Engineering,2018,47(11):340-350.
|
[14] |
朱科军. 光学玻璃透镜模压成形的数值仿真和实验研究[D]. 长沙: 湖南大学, 2013.
ZHU Kejun. Numerical simulation and experimental study of optical glass lens molding[D]. Changsha: Hunan University, 2013.
|
[15] |
WU Y M, CHEN Z J, DU J G, et al. A comprehensive review of theory and technology of glass molding process[J]. The International Journal of Advanced Manufacturing Technology. 2020, 107(3): 2671-2704.
|
[1] | HE Sijie, DAI Caihong, CHENG Qiutong, WU Zhifeng, LI Ling, WANG Yanfei. Influence of field of view angle and positioning error on spectral radiance measurement[J]. Journal of Applied Optics, 2023, 44(2): 386-391. DOI: 10.5768/JAO202344.0203004 |
[2] | LIANG Xiaodong, WANG Jia, YAO Linhai, LIU Tong, WANG Mingxin. Infrared radiation characteristics of head-on stealth missile[J]. Journal of Applied Optics, 2022, 43(1): 41-44. DOI: 10.5768/JAO202243.0101007 |
[3] | HAN Zhansuo, CAO Feng, WANG Jian’gang, LUO Beibei, QIN Yan, LIU Fang. Testing method about infrared radiation intensity of explosive used in vacuum environment[J]. Journal of Applied Optics, 2020, 41(6): 1230-1235. DOI: 10.5768/JAO202041.0603002 |
[4] | QIU Chao, ZHAI Siting, WU Kexuan, SUN Hongsheng, WANG Jiapeng, ZHANG Yuguo, YANG Wanglin, DU Jidong, GUO Yapin. Research on low-temperature infrared radiation measurement technology under vacuum condition[J]. Journal of Applied Optics, 2020, 41(4): 730-736. DOI: 10.5768/JAO202041.0406002 |
[5] | HANG Sijia, XIA Maopeng, LI Jianjun, ZHENG Xiaobing, LEI Zhenggang. Noise equivalent radiance calibration system for infrared Fourier spectrometer at low-temperature and vacuum environment[J]. Journal of Applied Optics, 2019, 40(6): 1103-1108. DOI: 10.5768/JAO201940.0603004 |
[6] | LIU Wei-feng, XIE Yong-jie, ZHAO Le-zhi. Measurement and research on sky background radiance luminance[J]. Journal of Applied Optics, 2012, 33(2): 351-354. |
[7] | LOU Shu-li, ZHOU Xiao-dong. Calculation of cloud infrared radiation based on optical depth[J]. Journal of Applied Optics, 2011, 32(2): 343-347. |
[8] | LIU Wei-feng, ZHAO Guo-min, WANG Lei, LI Zhi-chao, ZHAO Le-zhi, LIU Ze-xun, YUAN Yao-chen, SHI Jian-kang, CHEN Ruo-wang, JIANG Tao, ZHU Ji-yi. Design of sky-light radiation luminance measurement system[J]. Journal of Applied Optics, 2010, 31(3): 455-458. |
[9] | LI Xu-dong, FENG Ai-guo, ZHOU Xin-ni, WANG Xue-xin, XIE Yi. Radiation characteristics of IR target simulator used in field[J]. Journal of Applied Optics, 2010, 31(2): 252-255. |
[10] | ZHAN Chun-lian, LIU Jian-ping, LI Zheng-qi, LU Fei, CHEN Chao. Research on measurement of spectral radiance luminance base on hightemperature blackbody[J]. Journal of Applied Optics, 2006, 27(supp): 71-75. |
1. |
周爱国,赵吉林,安山,符长虹. 注重明度感知的通用渐进式无监督图像增强方法. 应用光学. 2024(05): 937-945 .
![]() | |
2. |
何忧,何晓程,董星. 基于多层激光雷达的3D虚拟环境感知系统. 激光杂志. 2023(01): 199-204 .
![]() | |
3. |
张玉亮,赵智龙,付炜平,刘洪吉,熊永平,尹子会. 融合边缘语义信息的单目深度估计. 科学技术与工程. 2022(07): 2761-2769 .
![]() | |
4. |
郭贵松,林彬,杨夏,张小虎. 基于斑马鱼图像特征的鱼群检测算法. 应用光学. 2022(02): 257-268 .
![]() | |
5. |
陈耀祖,谷玉海,成霞,徐小力. 基于优化YOLOv4算法的行驶车辆要素检测方法. 应用光学. 2022(02): 248-256 .
![]() | |
6. |
刘朔,谷玉海,饶文军,王菊远. 基于优化YOLOv3算法的违章车辆检测方法. 重庆理工大学学报(自然科学). 2021(04): 135-141 .
![]() | |
7. |
蔡伟,徐佩伟,杨志勇,蒋昕昊,姜波. 复杂背景下红外图像弱小目标检测. 应用光学. 2021(04): 643-650 .
![]() | |
8. |
洪波,刘雪芹,秦志亮,马本俊,王飞,刘映锋. 水面运动目标跟踪监控系统的设计与实现. 海洋技术学报. 2021(04): 62-73 .
![]() | |
9. |
高晓娟,梅秀庄,白福忠,李萍. 航拍巡线低照度彩色图像增强与电力小部件检测. 内蒙古工业大学学报(自然科学版). 2021(06): 461-467 .
![]() | |
10. |
陈裕如,赵海涛. 基于自适应像素级注意力模型的场景深度估计. 应用光学. 2020(03): 490-499 .
![]() | |
11. |
刘洋,姜涛,段学鹏. 基于YOLOv3的复杂天气条件下人车识别方法的研究. 长春理工大学学报(自然科学版). 2020(06): 57-65 .
![]() | |
12. |
侯军占,张卫国,庞澜,杨光,张夏疆,徐晓枫,黄维东. 地面小型无人侦察平台发展及关键技术探讨. 应用光学. 2019(06): 958-964 .
![]() |