DOU Mengmeng, ADAYI·Xieeryazidan. Effect of non-contact preheating on fog spots of molded infrared lenses[J]. Journal of Applied Optics, 2024, 45(2): 300-306. DOI: 10.5768/JAO202445.0201004
Citation: DOU Mengmeng, ADAYI·Xieeryazidan. Effect of non-contact preheating on fog spots of molded infrared lenses[J]. Journal of Applied Optics, 2024, 45(2): 300-306. DOI: 10.5768/JAO202445.0201004

Effect of non-contact preheating on fog spots of molded infrared lenses

More Information
  • Received Date: August 06, 2023
  • Revised Date: August 21, 2023
  • Available Online: March 04, 2024
  • When the aspheric infrared lens is molded, the lens press-cutting time can be shortened by increasing the temperature of the molding stage, thus improving the molding efficiency. However, it is easy to produce the fog spots on the lens surface, like a bad lens. Through the analysis of the formation mechanism of lens fog spots, a non-contact preheating molding process was adopted to reduce the formation of it, and the molding experiments were carried out on a multi-station molding press, in which the elements of fog spots were detected and analyzed by using an energy spectrometer. In this molding experiment, the non-contact preheating method was used to increase the molding temperature from 206℃ to 211℃ when the preheating gap was 1 mm, with no fog spots formed on the lens surface, and the press-cutting time was shortened by 21 s. The results show that the non-contact preheating method in the multi-station molding press can effectively eliminate the formation of lens fog spots. The test results show that the volatilization of the lens material in the molding stage plays a dominant role in the formation of fog spots.

  • [1]
    陈冉, 薛宇飞, 吴锦鹏, 等. 红外热成像技术在炮膛测温中的应用[J]. 应用光学,2022,43(4):732-737. doi: 10.5768/JAO202243.0404003

    CHEN Ran, XUE Yufei, WU Jinpeng, et al. Application of infrared thermal imaging technology in temperature measurement of gun breech[J]. Journal of Applied Optics,2022,43(4):732-737. doi: 10.5768/JAO202243.0404003
    [2]
    刘光宇, 房丰洲. 玻璃光学元件精密模压成形技术[J]. 光学学报,2023,43(8):186-213.

    LIU Guangyu, FANG Fengzhou. Precision mold forming technology for glass optical elements[J]. Acta Optica Sinica,2023,43(8):186-213.
    [3]
    KLOCKE F, DAMBON O, ROHWERDER M. Model of coating wear degradation in precision glass molding[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9): 43-49.
    [4]
    ZHOU T F, ZHANG C. Aspheric lens processing of chalcogenide glass via combined PGM-SPDT process[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(4) : 5855-5864.
    [5]
    林常规, 郭小勇, 王先锋, 等. As2Se3硫系玻璃非球面镜片的精密模压成型[J]. 红外与激光工程,2019,48(7):137-143.

    LIN Changgui, Guo Xiaoyong, WANG Xianfeng, et al. Precision molding of As2Se3 sulfur-based glass aspheric lenses[J]. Infrared and Laser Engineering,2019,48(7):137-143.
    [6]
    陈国荣, 章向华. 红外夜视仪用精密模压硫系玻璃研究进展[J]. 硅酸盐学报,2004,1(5):3-7.

    CHEN Guorong, ZHANG Xianghua. Research progress on precision molded sulfur glass for infrared night vision devices[J]. Journal of Silicate,2004,1(5):3-7.
    [7]
    张治国, 孙宇轩. 摩擦系数对非球面玻璃透镜模压成型的影响[J]. 机械设计与制造,2019,10(8):34-36. doi: 10.3969/j.issn.1001-3997.2019.08.010

    ZHANG Zhiguo, SUN Yuxuan. Influence of friction coefficient on molding of aspheric glass lenses[J]. Mechanical Design and Manufacturing,2019,10(8):34-36. doi: 10.3969/j.issn.1001-3997.2019.08.010
    [8]
    ZHANG X H, GUIMOND Y, BELLEC Y. Production of complex chalcogenide glass optics by molding for thermal imaging[J]. Journal of Non-Crystalline Solids,2003,326(7):519-523.
    [9]
    CHA D H, PARK H S, HWANG Y, et al. Experimental study of glass molding process and transcription characteristics of mold surface in molding of aspheric of glass lenses[J]. Optical Review,2011,18(2):241-242. doi: 10.1007/s10043-011-0049-4
    [10]
    周琴. 硫系玻璃非球面透镜模压成形仿真及实验研究 [D]. 北京: 北京理工大学, 2018.

    ZHOU Qin. Simulation and experimental research on molding and forming of sulfur-based glass aspheric lens [D]. Beijing: Beijing Institute of Technology, 2018.
    [11]
    张云龙, 焦眀印, 汪志斌. 衍射光学元件精密模压模具设计及预补偿[J]. 应用光学,2022,43(4):760-765. doi: 10.5768/JAO202243.0405002

    ZHANG Yunlong, JIAO Mingyin, WANG Zhibin. Design and pre-compensation of precision molding dies for diffractive optical elements[J]. Journal of Applied Optics,2022,43(4):760-765. doi: 10.5768/JAO202243.0405002
    [12]
    尹韶辉, 王玉方, 朱科军, 等. 微小非球面玻璃透镜超精密模压成形数值模拟[J]. 光子学报,2010,39(11):2020-2024. doi: 10.3788/gzxb20103911.2020

    YIN Shaohui, WANG Yufang, ZHU Kejun, et al. Numerical simulation of ultra-precision molding of tiny aspherical glass lenses[J]. Acta Photonica Sinica,2010,39(11):2020-2024. doi: 10.3788/gzxb20103911.2020
    [13]
    唐昆, 孔明慧, 李雨典, 等. 冷却间隙对小口径双非球面硫系玻璃镜片模压成型质量的影响[J]. 红外与激光工程,2018,47(11):340-350.

    TANG Kun, KONG Minghui, LI Yudian, et al. Influence of cooling gap on the molding quality of small-diameter double aspherical sulfur glass lenses[J]. Infrared and Laser Engineering,2018,47(11):340-350.
    [14]
    朱科军. 光学玻璃透镜模压成形的数值仿真和实验研究[D]. 长沙: 湖南大学, 2013.

    ZHU Kejun. Numerical simulation and experimental study of optical glass lens molding[D]. Changsha: Hunan University, 2013.
    [15]
    WU Y M, CHEN Z J, DU J G, et al. A comprehensive review of theory and technology of glass molding process[J]. The International Journal of Advanced Manufacturing Technology. 2020, 107(3): 2671-2704.
  • Cited by

    Periodical cited type(5)

    1. 李海滨,纪晓鹏,郑祥,杨英,吴喜元. 玻璃幕墙结构热损伤区域图像改进机器视觉识别方法. 粉煤灰综合利用. 2024(02): 164-168 .
    2. 顾盛,史慧媛,张军,夏志远,唐柏鉴. 数字图像相关技术在土木工程中的应用进展. 南京工程学院学报(自然科学版). 2024(04): 21-30 .
    3. 李芊,马诚誉,张翔. 基于变权-二维云模型的既有玻璃幕墙安全预警方法. 项目管理技术. 2023(05): 25-31 .
    4. 李俊,张鼎博,张訢炜,张家瑞,姚瑞煦,范斌斌. 基于光纤光栅传感与视频位移计技术的运营期铁路隧道结构安全监测. 激光与光电子学进展. 2023(23): 177-185 .
    5. 张翔,李芊,王腊银,黄歆. 基于可变模糊云的既有玻璃墙安全预警. 科学技术与工程. 2022(14): 5817-5827 .

    Other cited types(4)

Catalog

    Article views (78) PDF downloads (38) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return