DU Rui, YANG Jun, LIAO Binbin, LU Qiang, ZHENG Hang, DING Yang, SHI Guokai, LI Jin, XU Haibin, ZHANG Suoqi, ZHANG Dezhi. Measurement technology of stress wave particle velocity in solid medium based on optical fiber coated probe[J]. Journal of Applied Optics, 2024, 45(1): 221-228. DOI: 10.5768/JAO202445.0108001
Citation: DU Rui, YANG Jun, LIAO Binbin, LU Qiang, ZHENG Hang, DING Yang, SHI Guokai, LI Jin, XU Haibin, ZHANG Suoqi, ZHANG Dezhi. Measurement technology of stress wave particle velocity in solid medium based on optical fiber coated probe[J]. Journal of Applied Optics, 2024, 45(1): 221-228. DOI: 10.5768/JAO202445.0108001

Measurement technology of stress wave particle velocity in solid medium based on optical fiber coated probe

More Information
  • Received Date: March 06, 2023
  • Revised Date: May 22, 2023
  • Available Online: August 09, 2023
  • Particle velocity is an important parameter for analyzing the propagation law of stress waves in a solid medium. Combining the laser Doppler effect and an all-fiber interferometric velocimetry system, a measurement method of stress wave particle velocity in solid medium based on fiber coated probe was proposed. The optical fiber coated probe was embedded in the polymethyl methacrylate (PMMA) at the same radius from the burst center, and the miniature explosive ball with 0.125 g TNT equivalent was used as the explosion source to fill in the center cavity and generate stress wave. Based on the time-frequency analysis method of the short-time Fourier transform, the velocity of the optical fiber end surface could be calculated from the collected signal, and then the medium particle velocity could be deduced. The experimental results show that the velocity of the data measured by different fiber coated probes is 22.648 m/s and 23.505 m/s, respectively. The relative difference between the resulting particle velocity and the data obtained by the traditional circular electromagnetic particle speedometer method is less than 5.00%, which indicates the feasibility of the proposed method.

  • [1]
    朱小明, 宋宏伟, 刘辉. 岩石中爆炸应力波衰减规律[J]. 山西建筑,2007,33(31):112-113.

    ZHU Xiaoming, SONG Hongwei, LIU Hui. The attenuation regular of blasting stress wave in rocks[J]. Shanxi Architecture,2007,33(31):112-113.
    [2]
    赵生伟, 周刚, 王占江, 等. 小当量水中爆炸气泡的脉动现象[J]. 爆炸与冲击,2009,29(2):213-216. doi: 10.11883/1001-1455(2009)02-0213-04

    ZHAO Shengwei, ZHOU Gang, WANG Zhanjiang, et al. Bubble pulses of small-scale underwater explosion[J]. Explosion and Shock Waves,2009,29(2):213-216. doi: 10.11883/1001-1455(2009)02-0213-04
    [3]
    胡杨, 陈永涛, 金山. 用于冲击波速度测量的自检式光纤传感系统[J]. 红外与激光工程,2012,41(9):2444-2448.

    HU Yang, CHEN Yongtao, JIN Shan. Self-check fiber-optic sensor system in shock-wave velocity detection[J]. Infrared and Laser Engineering,2012,41(9):2444-2448.
    [4]
    卢强, 王占江, 门朝举, 等. 有机玻璃中球形应力波传播的分析[J]. 爆炸与冲击,2013,33(6):561-566.

    LU Qiang, WANG Zhanjiang, MEN Chaoju, et al. Analysis of spherical stress wave propagating in PMMA[J]. Explosion and Shock Waves,2013,33(6):561-566.
    [5]
    王占江, 李孝兰, 张若棋, 等. 固体介质中球形发散波的实验装置[J]. 爆炸与冲击,2000,20(2):103-109.

    WANG Zhanjiang, LI Xiaolan, ZHANG Ruoqi, et al. An experimental apparatus for spherical wave propagation in solid[J]. Explosion and Shock Waves,2000,20(2):103-109.
    [6]
    卢强, 王占江, 丁洋, 等. 线黏弹性球面发散应力波的频率响应特性[J]. 爆炸与冲击,2017,37(6):1023-1030.

    LU Qiang, WANG Zhanjiang, DING Yang, et al. Characteristics of frequency response for linear viscoelastic spherical divergent stress waves[J]. Explosion and Shock Waves,2017,37(6):1023-1030.
    [7]
    卢强, 王占江, 张景森, 等. 黄土和砂土岩中填实爆炸辐射弹性波的对比研究[J]. 爆炸与冲击,2019,39(5):31-37.

    LU Qiang, WANG Zhanjiang, ZHANG Jingsen, et al. Comparative studies on characteristics of elastic wave radiated from the tamped explosion in loess and rock-like sandy soil[J]. Explosion and Shock Waves,2019,39(5):31-37.
    [8]
    FISHER N E, WEBB D J, PANNELL C N, et al. Ultrasonic hydrophone based on short in-fiber Bragg gratings[J]. Applied Optics,1998,37(34):8120-8128. doi: 10.1364/AO.37.008120
    [9]
    MORRIS P, HURRELL A, SHAW A, et al. A Fabry-Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure[J]. The Journal of the Acoustical Society of America,2009,125(6):3611-3622. doi: 10.1121/1.3117437
    [10]
    WATSON S, GANDER M J, MACPHERSON W N, et al. Laser-machined fibers as fabry-perot pressure sensors[J]. Applied Optics,2006,45(22):5590-5596. doi: 10.1364/AO.45.005590
    [11]
    KOCH C, JENDERKA K V. Measurement of sound field in cavitating media by an optical fibre-tip hydrophone[J]. Ultrasonics Sonochemistry,2008,15(4):502-509. doi: 10.1016/j.ultsonch.2007.05.007
    [12]
    刘俊明, 张旭, 裴红波, 等. JB-9014钝感炸药冲击Hugoniot关系测量[J]. 高压物理学报,2018,32(3):43-49.

    LIU Junming, ZHANG Xu, PEI Hongbo, et al. Measurement of Hugoniot relation for JB-9014 insensitive explosive[J]. Chinese Journal of High Pressure Physics,2018,32(3):43-49.
    [13]
    MERCIER P, BÉNIER J, FRUGIER P A, et al. Nitromethane ignition observed with embedded PDV optical fibers[J]. EPJ Web of Conferences,2010,10:00016. doi: 10.1051/epjconf/20101000016
    [14]
    刘寿先, 黄文斌, 邓向阳, 等. 基于埋入式光纤探针的炸药内爆轰波速度测量技术初探[C]//2014(第六届)含能材料与钝感弹药技术学术研讨会论文集. 成都: [出版者不详], 2014: 4.

    LIU Shouxian, HUANG Wenbin, DENG Xiangyang, et al. Continuous detonation velocity measurement using embedded fiber probe[C]// Collection of the 2014 Symposium on Energy Materials and Plunt Ammunition Technology, Chengdu: [s.n.], 2014: 4.
    [15]
    CRANCH G A, LUNSFORD R, GRÜN J, et al. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe[J]. Applied Optics,2013,52(32):7791-7796. doi: 10.1364/AO.52.007791
    [16]
    CRANCH G A, GRÜN J, WEAVER J, et al. High power laser and explosive driven shock wave characterization in solids using fiber optic probes[J]. SPIE,2015,9634:189-192.
    [17]
    高赞, 贾宪振, 郭炜, 等. 冲击波在有机玻璃中输入和传播规律研究[J]. 科学技术与工程,2012,12(19):4634-4637.

    GAO Zan, JIA Xianzhen, GUO Wei, et al. Study on input and transmit rules of shock wave in PMMA[J]. Science Technology and Engineering,2012,12(19):4634-4637.
    [18]
    周健, 龙兴武. 差动激光多普勒测速仪在固体速度测量中的应用[J]. 应用光学,2009,30(2):334-337.

    ZHOU Jian, LONG Xingwu. Application of differential laser Doppler velocimeter in solid velocity measurement[J]. Journal of Applied Optics,2009,30(2):334-337.
    [19]
    王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005: 45-47.

    WANG Lili. Foundation of stress waves[M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 45-47.
  • Related Articles

    [1]HU Yunhang, WANG Lingjie, LIU Yang, WANG Lianqiang, ZHOU Di. Mathematical modeling and evaluation of signal-to-noise ratio for single-photon laser active detection[J]. Journal of Applied Optics, 2025, 46(1): 194-201. DOI: 10.5768/JAO202546.0107001
    [2]MA Shibang, LI Dong, XIE Qi, LI Hongguang, ZHANG Deng, CHU Junwei, SUN Yu'nan. Calibration technology for spectral range and signal-to-noise ratio of terahertz time-domain spectrometer[J]. Journal of Applied Optics, 2023, 44(5): 1068-1072. DOI: 10.5768/JAO202344.0503002
    [3]ZHAO Ming, WANG Tianshu. High SNR multi-wavelength 2 μm actively mode-locked fiber laser[J]. Journal of Applied Optics, 2021, 42(1): 194-199. DOI: 10.5768/JAO202142.0108001
    [4]WU Xing-lin, QIU Ya-feng, QIAN Yun-sheng, LIU Zhao-lu, CHENG Hong-chang. Relationship between voltage of MCP and signal-to-noise ratio of UV image intensifier[J]. Journal of Applied Optics, 2013, 34(3): 494-497.
    [5]LIU Shu-lin, DONG Yu-hui, SUN Jian-ning, DENG Guang-xu. Relation between signal-to-noise ratio of LLL image intensifier and voltage of MCP[J]. Journal of Applied Optics, 2009, 30(4): 650-653.
    [6]XIANG Shi-ming. Theoretical limit for SNR of LLL image intensifiers[J]. Journal of Applied Optics, 2008, 29(5): 724-726.
    [7]SHI Feng, CHENG Hong-chang, HE Ying-ping, LIANG Hong-jun. Optimization for signal-to-noise ratio of low-light-level image intensifier[J]. Journal of Applied Optics, 2008, 29(4): 562-564.
    [8]CHEN Xin-jin, YUAN Yan, LI Li-ying, XIAO Xiang-guo, LIU Hui. Analysis of signal-to-noise ratio for target detection[J]. Journal of Applied Optics, 2007, 28(4): 397-400.
    [9]PAN Jing-sheng, SU De-tan, XU Zhi-qing, LIU Shu-lin. High signal-to-noise ratio MCP for Gen.Ⅲ image intensifier[J]. Journal of Applied Optics, 2007, 28(3): 301-304.
    [10]ZHOU Bin, LIU Bing-qi, MAN Bo. Research on Testing Image Transfer Signal-to-Noise Ratio of Image Intensifer[J]. Journal of Applied Optics, 2004, 25(5): 60-61.
  • Cited by

    Periodical cited type(4)

    1. 方波浪,武俊杰,王晟,吴振杰,李天植,张洋,杨鹏翎,王建国. 基于物理信息神经网络的金属表面吸收率测量方法. 物理学报. 2024(09): 126-133 .
    2. 张金玉,金尚忠,张彪,吴磊,俞兵,袁良,黎高平. 光腔衰荡法数据截取对时间常数测量精度的影响分析. 应用光学. 2023(01): 153-158 . 本站查看
    3. 张彪,张金玉,吉晓,段园园,吴磊,黎高平,于东钰,阴万宏. 测量大口径光学元件反射率用精密扫描系统误差分析. 应用光学. 2023(02): 380-385 . 本站查看
    4. 孟宁喜,郭伟,吴立志,沈瑞琪,叶迎华,张伟. 激光诱导多孔阳极氧化铝等离子体的特性. 中国激光. 2019(02): 271-277 .

    Other cited types(6)

Catalog

    Article views (150) PDF downloads (40) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return