HUANG Zhanhua, GAO Yibing, WU Yuanjun, PAN Cheng, LU Changtai, ZHANG Yinxin. Design of diffractive waveguide collimating lens with high optical efficiency in edge field[J]. Journal of Applied Optics, 2024, 45(1): 54-62, 78. DOI: 10.5768/JAO202445.0101008
Citation: HUANG Zhanhua, GAO Yibing, WU Yuanjun, PAN Cheng, LU Changtai, ZHANG Yinxin. Design of diffractive waveguide collimating lens with high optical efficiency in edge field[J]. Journal of Applied Optics, 2024, 45(1): 54-62, 78. DOI: 10.5768/JAO202445.0101008

Design of diffractive waveguide collimating lens with high optical efficiency in edge field

More Information
  • Received Date: March 29, 2023
  • Revised Date: May 19, 2023
  • Available Online: December 22, 2023
  • Augmented reality (AR) display systems are developing towards ultra-miniaturization with the use of micro-light emitting diodes (Micro-LED) as miniature image sources in AR display technology. However, the Micro-LED with a large luminous angle, the collimating lens with a small size and high image quality, and the low optical efficiency at the edge of the field of view (FOV) and nonuniform illumination by vignetting of the collimating lens pose challenges for the design of AR optical systems. To solve these problems, a collimating lens was designed with high uniformity of illumination and high optical efficiency of the edge field of view for the diffraction grating waveguide by adding the calculated aspherical field lens. Then, by analyzing the theory in detail, its surface shape parameters were solved, and the lens with relatively uniform illumination was designed. The new collimating lens had a diagonal FOV of 41.2°, an F/# (F#) of 1.87, and a modulation transfer function greater than 0.5 at 125 lp/mm. The simulation results show that the illumination uniformity is relatively improved by 14%, and the optical efficiency of the edge FOV is relatively increased by 15%. The lens has good imaging performance, and can be applied in the ultra-small AR diffraction grating waveguide head-mounted display system.

  • [1]
    CHEN Z, SANG X, LIN Q, et al. A see-through holographic head-mounted display with the large viewing angle[J]. Optics Communications,2017,384:125-129. doi: 10.1016/j.optcom.2016.10.009
    [2]
    HUA H, HU X, GAO C. A high-resolution optical see-through head-mounted display with eyetracking capability[J]. Optics Express,2013,21(25):30993-30998. doi: 10.1364/OE.21.030993
    [3]
    ZHOU P, LI Y, LIU S, et al. Compact design for optical-see-through holographic displays employing holographic optical elements[J]. Optics Express,2018,26(18):22866-22876. doi: 10.1364/OE.26.022866
    [4]
    ZHAN T, ZOU J, LU M, et al. Wavelength-multiplexed multi-focal-plane seethrough near-eye displays[J]. Optics Express,2019,27(20):27507-27513. doi: 10.1364/OE.27.027507
    [5]
    SIDOROV V I, ROMANOVA G E. Design and analysis of a simple augmented reality optical system with AMOLED microdisplay[J]. SPIE:Optical Design and Engineering VII, 2018, 10690: 106901S-1-7.
    [6]
    LI H, ZHANG X, WANG C, et al. Design of an off-axis helmet-mounted display with freeform surface described by radial basis functions[J]. Optics Communications,2013,309:121-126. doi: 10.1016/j.optcom.2013.06.054
    [7]
    WEI L, LI Y, JING J, et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface[J]. Optics Express,2018,26(7):8550-8565. doi: 10.1364/OE.26.008550
    [8]
    CHENG D, DUAN J, CHEN H, et al. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research,2022,10(1):21-32. doi: 10.1364/PRJ.440018
    [9]
    CHEN B, HERKOMMER A M. Alternate optical designs for head-mounted displays with a wide field of view[J]. Applied Optics,2017,56(4):901-906. doi: 10.1364/AO.56.000901
    [10]
    WANG Q, CHENG D, HOU Q, et al. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide[J]. Optics Express,2020,28(23):35376-35394. doi: 10.1364/OE.409006
    [11]
    YANG J, TWARDOWSKI P, GERARD P, et al. Design of a large field-of-view see-through near to eye display with two geometrical waveguides[J]. Optics Letters,2016,41(23):5426-5429. doi: 10.1364/OL.41.005426
    [12]
    XIAO J, LIU J, HAN J, et al. Design of achromatic surface microstructure for near-eye display with diffractive waveguide[J]. Optics Communications,2019,452:411-416. doi: 10.1016/j.optcom.2019.04.004
    [13]
    王龙辉, 汪岗, 黄丽琼, 等. 一种单色全息平板波导显示系统的研究[J]. 应用光学,2019,40(2):241-245.

    WANG Longhui, WANG Gang, HUANG Liqiong, et al. Study on monochromatic holographic planar waveguide display system[J]. Journal of Applied Optics,2019,40(2):241-245.
    [14]
    CHENG D, WANG Q, LIU Y, et al. Design and manufacture AR head-mounted displays: a review and outlook[J]. Light:Advanced Manufacturing,2021,2(3):350-369.
    [15]
    ZHANG Y, FANG F. Development of planar diffractive waveguides in optical see-through head-mounted displays[J]. Precision Engineering,2019,60:482-496. doi: 10.1016/j.precisioneng.2019.09.009
    [16]
    PAN J, HUNG H. Optical design of a compact see-through head-mounted display with light guide plate[J]. Journal of Display Technology,2015,11(3):223-228. doi: 10.1109/JDT.2014.2374772
    [17]
    ZHAO K, PAN J. Optical design for a see-through head-mounted display with high visibility[J]. Optics Express,2016,24(5):4749-4760. doi: 10.1364/OE.24.004749
    [18]
    PAN C, LIU Z, PANG Y, et al. Design of a high-performance in-coupling grating using differential evolution algorithm for waveguide display[J]. Optics Express,2018,26(20):26646-26662. doi: 10.1364/OE.26.026646
    [19]
    GROSSMANN C, RIEHEMANN S, NOTNI G, et al. OLED-based pico-projection system[J]. Journal of the Society for Information Display,2010,18(10):821-826.
    [20]
    KONEVA T A, ROMANOVA G E. Design and aberration analysis of several AR optical architectures working with different sources of image[J]. Digital Optical Technologies II,2019,11062:110621V-1-8.
    [21]
    徐尧洲. 红外光学系统中的场镜设计[J]. 红外与毫米波学报,1982,1(2):115-120.

    XU Yaozhou. Design of field lens in infrared optical systems[J]. Journal of Infrared and Millimeter Waves,1982,1(2):115-120.
    [22]
    王腾飞, 陈永和, 傅雨田. 基于微场镜阵列的红外光场中继成像系统[J]. 红外与激光工程,2020,49(7):20190541-88.

    WANG Tengfei, CHEN Yonghe, FU Yutian. Infrared light field relay imaging system based on micro field lens array[J]. Infrared and Laser Engineering,2020,49(7):20190541-88.
    [23]
    XIONG J, HSIANG E, HE Z, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives[J]. Light:Science & Applications,2021,10(1):1-30.
    [24]
    KONG D, ZHAO Z, SHI X, et al. Optimization of gratings in a diffractive waveguide using relative-direction-cosine diagrams[J]. Optics Express,2021,29(22):36720-36733. doi: 10.1364/OE.433515
    [25]
    RIEHEMANN S, GROSSMANN C, VOGEL U, et al. Ultra small OLED pico projector: Ground-breaking, active illumination-free concept enables new projection applications[J]. Optik & Photonik,2009,4(2):34-36.
    [26]
    SAARIKKO P. Diffractive exit-pupil expander with a large field of view[J]. SPIE,2008,7001:700105. doi: 10.1117/12.780514
    [27]
    WU Y, PAN C, GAO Y, et al. Design of ultra-compact augmented reality display based on grating waveguide with curved variable-period grating[J]. Optics Communications,2022,529:128980-1-7.
    [28]
    马淋峰, 刘智颖, 黄蕴涵, 等. 基于增强现实的照明系统光学设计与分析[J]. 应用光学,2022,43(2):179-190. doi: 10.5768/JAO202243.0201001

    MA Linfeng, LIU Zhiying, HUANG Yunhan, et al. Optical design and analysis of illumination system based on augmented reality[J]. Journal of Applied Optics,2022,43(2):179-190. doi: 10.5768/JAO202243.0201001
  • Related Articles

    [1]XIE Huiyang, MU Da, ZHANG Yue, LI Tangyue, XIA Pengyu. Design of surface relief grating elements for augmented reality display devices[J]. Journal of Applied Optics, 2024, 45(4): 849-857. DOI: 10.5768/JAO202445.0405001
    [2]SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. DOI: 10.5768/JAO202344.0301002
    [3]LIU Xiaochan, CHEN Chen, SONG Tao, LI Weishan, ZHANG Xin, GAO Song, YANG Bo. Optical design of spherical zone projection lens for small and medium-sized flight simulator[J]. Journal of Applied Optics, 2023, 44(1): 30-36. DOI: 10.5768/JAO202344.0101005
    [4]YANG Liangliang, ZHAO Yongbing, CHEN Feng, YUAN Deyin. Design of athermal MWIR/LWIR optical system with double-layer diffractive optical elements[J]. Journal of Applied Optics, 2019, 40(5): 756-762. DOI: 10.5768/JAO201940.0501007
    [5]Hou Guozhu, Lyu Lijun. Design of large aperture zoom projection lens[J]. Journal of Applied Optics, 2018, 39(3): 405-411. DOI: 10.5768/JAO201839.0305001
    [6]Hou Guozhu, Lyu Lijun, Cao Yiqing. Design of large FOV projection lens based on ZEMAX[J]. Journal of Applied Optics, 2016, 37(5): 742-746. DOI: 10.5768/JAO201637.0505001
    [7]Li Wei-shan, Chen Chen, Liu Xiao-chan, Zhang Yu. Optical design of digital fish-eye lens for dome-screen projector[J]. Journal of Applied Optics, 2016, 37(1): 39-44. DOI: 10.5768/JAO201637.0101007
    [8]WU Cong-jun, YAN Chang-xiang. Imaging spectrometer optical design based on prism-grating-prism dispersing device[J]. Journal of Applied Optics, 2012, 33(1): 37-43.
    [9]LI Wei-shan, CHEN Chen, ZHANG Yu, LIU Xiao-chan. Design of short focal digital projection lens based on ZEMAX[J]. Journal of Applied Optics, 2010, 31(5): 714-717.
    [10]GOU Zhi-yong, WANG Jiang, WANG Lei, WANG Chu. Diffractionlimited aspheric collimation lens[J]. Journal of Applied Optics, 2006, 27(6): 528-530.
  • Cited by

    Periodical cited type(4)

    1. 林正煜,张继艳,孙丽婷,秦腾,曹天皓. 大面阵高分辨率三变倍双远心光学设计. 激光与红外. 2024(05): 796-803 .
    2. 邢一臣,王洋,张磊. 环形多反射式可见/短波红外光学镜头设计. 激光与光电子学进展. 2023(20): 183-187 .
    3. 汤天瑾,杨居奎,伏瑞敏,孙立,孙欣,王玉诏,宋志清. 陆地生态系统碳监测卫星多波束激光雷达光学系统设计. 航天返回与遥感. 2022(06): 36-49 .
    4. 马占鹏,薛要克,沈阳,赵春晖,周藏龙,林上民,王虎. 可见/红外双色共孔径光学系统设计及实现. 光子学报. 2021(05): 32-40 .

    Other cited types(2)

Catalog

    Article views (156) PDF downloads (88) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return