Citation: | WEI Shaoqiang, LI Yunfei, ZHANG Junyao, WEI Yongjie. Design of strong laser coupling device for large core diameter bunched fiber[J]. Journal of Applied Optics, 2023, 44(6): 1212-1218. DOI: 10.5768/JAO202344.0610007 |
Fiber transmission is a common mode of laser transmission, with the improvement of optical fiber preparation technology, energy transfer fiber with large core diameter and large numerical aperture is widely used in multi-mode laser transmission. Efficient laser coupling is the premise of stable transmission of optical fiber, in order to achieve laser coupling with wide band and high power density, according to the transmission transformation characteristics of mixed-mode Gaussian-like beam and the initial parameters, combined with aberration analysis, an aspherical lens coupling device between large-core four-in-one bunched fiber and single-core fiber was designed, and the maximum fiber coupling efficiency of 60.6% was obtained through mechanical installation experiments. Coupled with a self-developed laser resonance ionization time of flight mass spectrometer, the laser saturation power density corresponding to the three-color, three-step photoionization path of neodymium isotope was measured, and it was verified that the device could meet the spectral experiment requirements of specific isotope resonance excitation ionization induced by complex lasers.
[1] |
DURVILLE F, CILIA D. Optical systems for high power laser beam delivery[J]. SPIE, 1989, 1024: 75-78.
|
[2] |
田晓, 黄宝玉, 张俊. 利用单透镜结构实现自由空间激光进入单模光纤的耦合研究[J]. 光电子•激光,2020,31(4):362-366.
TIAN Xiao, HUANG Baoyu, ZHANG Jun. Study on high efficiency coupling of free space laser entering single mode fiber using single lens[J]. Journal of Optoelectronics • Laser,2020,31(4):362-366.
|
[3] |
郭照师, 秦文斌, 李景, 等. 基于楔形整形镜对半导体激光的光纤耦合[J]. 发光学报,2021,42(1):98-103. doi: 10.37188/CJL.20200233
GUO Zhaoshi, QIN Wenbin, LI Jing, et al. Fiber coupling of semiconductor laser based on wedge-shaped lens[J]. Chinese Journal of Luminescence,2021,42(1):98-103. doi: 10.37188/CJL.20200233
|
[4] |
丁兵, 赵鹏飞, 段程芮, 等. 高亮度绿光半导体激光器光纤耦合系统设计与仿真[J]. 中国激光,2021,48(5):210-217.
DING Bing, ZHAO Pengfei, DUAN Chengrui, et al. Design and simulation of high brightness fiber coupling system of green laser diodes[J]. Chinese Journal of Lasers,2021,48(5):210-217.
|
[5] |
王文亮, 李志明, 沈小攀, 等. 用于原子能级结构研究的激光共振电离光谱系统[J]. 光谱学与光谱分析,2017,37(12):3653-3657.
WANG Wenliang, LI Zhiming, SHEN Xiaopan, et al. A laser resonance ionization spectroscopy apparatus for study on atomic energy level[J]. Spectroscopy and Spectral Analysis,2017,37(12):3653-3657.
|
[6] |
沈小攀, 李志明, 王文亮, 等. 激光共振电离质谱法测量锡的同位素比[J]. 分析化学,2017,45(3):342-347.
SHEN Xiaopan, LI Zhiming, WANG Wenliang, et al. Measurement of tin isotope ratios by laser resonance ionization mass spectrometry[J]. Chinese Journal of Analytical Chemistry,2017,45(3):342-347.
|
[7] |
SHEN X P, WANG W L, ZHAI L H, et al. New spectroscopic data on high-lying excited even-parity levels of atomic neodymium[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2018,145:96-98. doi: 10.1016/j.sab.2018.04.012
|
[8] |
张钧尧, 薛轶, 周鸿儒. 基于激光共振电离质谱的钆奇宇称高激发态研究[J]. 原子与分子物理学报, 2024, 41(1): 014002-1-5.
ZHANG Junyao, XUE Yi, ZHOU Hongru. The research on odd-parity high-lying energy levels of gadolinium based on resonance ionization mass spectroscopy[J]. Journal of Atomic and Molecular Physics, 2024, 41(1): 014002-1-5.
|
[9] |
赵兴海, 高杨, 徐美健, 等. 脉冲激光诱导光纤损伤的测试方法[J]. 强激光与粒子束,2007,19(10):1627-1631.
ZHAO Xinghai, GAO Yang, XU Meijian, et al. Experimental measurement of pulsed-laser induced damage to fibers[J]. High Power Laser and Particle Beams,2007,19(10):1627-1631.
|
[10] |
KUHN A, BLEWETT I J, HAND D P, et al. Optical fibre beam delivery of high-energy laser pulses: beam quality preservation and fibre end-preparation[J]. Optics and Lasers in Engineering,2000,34(4/5/6):273-288.
|
[11] |
赵兴海, 高杨, 徐美健, 等. 高峰值功率脉冲激光的光纤传能特性[J]. 红外与激光工程,2008,37(3):444-448.
ZHAO Xinghai, GAO Yang, XU Meijian, et al. Power delivery characteristics of fibers for high-peak power pulse laser[J]. Infrared and Laser Engineering,2008,37(3):444-448.
|
[12] |
黄永明, 吕英华, 杨性愉. 高阶模激光束通过会聚光学系统的聚焦特性[J]. 光学技术,2000,26(4):331-333.
HUANG Yongming, LYU Yinghua, YANG Xingyu. Focusing characteristic of higher order mode laser beams propagation through focusing optical system[J]. Optical Technique,2000,26(4):331-333.
|
[13] |
吕百达. 强激光的传输与控制[M]. 北京: 国防工业出版社, 1999: 64-65.
LYU Baida. Propagation and control of high-power lasers[M]. Beijing: National Defense Industry Press, 1999: 64-65.
|
[14] |
朱洪波, 刘云, 郝明明, 等. 高效率半导体激光器光纤耦合模块[J]. 发光学报,2011,32(11):1147-1151. doi: 10.3788/fgxb20113211.1147
ZHU Hongbo, LIU Yun, HAO Mingming, et al. High efficiency module of fiber coupled diode laser[J]. Chinese Journal of Luminescence,2011,32(11):1147-1151. doi: 10.3788/fgxb20113211.1147
|
[15] |
王宝华, 姜梦华, 惠勇凌, 等. 大功率固体激光器高效率光纤耦合[J]. 中国激光,2008,35(2):195-199. doi: 10.3788/CJL20083502.0195
WANG Baohua, JIANG Menghua, HUI Yongling, et al. Improving coupling efficiency of optical fiber for high-power laser beam[J]. Chinese Journal of Lasers,2008,35(2):195-199. doi: 10.3788/CJL20083502.0195
|
[16] |
张俊, 冯莹, 陈爽. 高功率激光光纤耦合系统设计与分析[J]. 光学与光电技术,2007,5(1):47-49.
ZHANG Jun, FENG Ying, CHEN Shuang. Design and analysis of coupling system between fibers for high power laser beam[J]. Optics & Optoelectronic Technology,2007,5(1):47-49.
|
[17] |
张栩, 邢颍滨, 褚应波, 等. 基于全光纤结构的光束匀化整形技术研究进展[J]. 激光与光电子学进展,2022,59(15):192-208.
ZHANG Xu, XING Yingbin, CHU Yingbo, et al. Research progress on beam homogenization and shaping technology using all-fiber structure[J]. Laser & Optoelectronics Progress,2022,59(15):192-208.
|
[18] |
NIU J F, XU J Q. Coupling efficiency of laser beam to multimode fiber[J]. Optics Communications,2007,274(2):315-319. doi: 10.1016/j.optcom.2007.02.027
|
[19] |
BABICHEV A P, GRIGORIEV I S, GRIGORIEV A I, et al. Development of the laser isotope separation method (AVLIS) for obtaining weight amounts of highly enriched 150 isotope[J]. Quantum Electronics,2005,35(10):879-890. doi: 10.1070/QE2005v035n10ABEH006601
|
[1] | WANG Xinqiang, QIN Shan, SUN Xiaobing, XIONG Wei, YE Song, WANG Fangyuan, TONG Xuanke. Rapid measurement of sludge sedimentation ratio based on polarization information[J]. Journal of Applied Optics, 2025, 46(1): 121-128. DOI: 10.5768/JAO202546.0103001 |
[2] | HOU Xiaoming, QIU Yafeng. Weather recognition method based on convolutional neural network and feature fusion[J]. Journal of Applied Optics, 2023, 44(2): 323-329. DOI: 10.5768/JAO202344.0202004 |
[3] | TANG Wenrui, MA Lin, ZHU Siqi, LIN Sifan, JIA Longze. Area mapping for water and forest based on satellite hyper-spectral remote sensing[J]. Journal of Applied Optics, 2022, 43(5): 886-892. DOI: 10.5768/JAO202243.0502002 |
[4] | CHEN Peng, YAN Xianze, HAN Yangyang, WU Chenyang, ZAN Hao. Nitrate nitrogen concentration detection method based on principal component analysis and BP neural network[J]. Journal of Applied Optics, 2020, 41(4): 761-768. DOI: 10.5768/JAO202041.0410002 |
[5] | Zhang Xinting, Kang Lei, Wu Qianqian, Zhang Wanyi, Li Yuyao. PSD nonlinear correction based on BP optimization algorithm[J]. Journal of Applied Optics, 2016, 37(3): 415-418. DOI: 10.5768/JAO201637.0303003 |
[6] | LI Ji. Image compression used improved error back-propagation neural network[J]. Journal of Applied Optics, 2013, 34(6): 974-979. |
[7] | FAN Yuan-yuan, SANG Ying-jun, SHEN Xiang-heng. Optimization of image quality assessment parameters based on back-propagation neural network[J]. Journal of Applied Optics, 2011, 32(6): 1150-1155. |
[8] | WANG Lei, QIAO Xiao-yan, ZHANG Shu, ZHAO Fa-gang, DONG You-er. Pesticide residue detection by fluorescence spectral analysis based on BP neural network[J]. Journal of Applied Optics, 2010, 31(3): 442-446. |
[9] | MA Tao, SUN Hong-hui, XIAO Song, LIU Chao-shan. Recognition algorithm for star pattern of little swatch based on BP neural network[J]. Journal of Applied Optics, 2009, 30(2): 252-256. |
[10] | WANG Yong-zhong, ZHANG Yong, FENG Guang-bin, XUE Rui, HUA Wen-sheng. Application of BP neural network in correlated[J]. Journal of Applied Optics, 2006, 27(1): 15-18. |
1. |
赵敏琨,刘小雄,徐新龙,杨楠,王映龙. 基于视觉的空中加油定位技术研究. 计算机测量与控制. 2023(06): 267-273+279 .
![]() |