CHEN Bingkun, GAO Bo. Influence of high-order dispersion on output pulse characteristics in passively mode-locked fiber laser[J]. Journal of Applied Optics, 2023, 44(5): 1102-1108. DOI: 10.5768/JAO202344.0507001
Citation: CHEN Bingkun, GAO Bo. Influence of high-order dispersion on output pulse characteristics in passively mode-locked fiber laser[J]. Journal of Applied Optics, 2023, 44(5): 1102-1108. DOI: 10.5768/JAO202344.0507001

Influence of high-order dispersion on output pulse characteristics in passively mode-locked fiber laser

More Information
  • Received Date: February 26, 2023
  • Revised Date: April 10, 2023
  • Available Online: August 13, 2023
  • A theoretical model of passively mode-locked fiber laser was constructed, and the influences of high-order dispersion on output pulse characteristics were studied by numerical simulation in both time domain and frequency domain. In terms of time domain, the third-order dispersion resulted in distortion of pulse shape, asymmetry of pulse time-domain profile and temporal shift. In terms of frequency domain, the third-order dispersion caused changes in position and intensity of sidebands. At the same time, it was found that the fourth-order dispersion could broaden the pulse and change sidebands intensity of the pulse. The results are instructive for the practical applications of the passively mode-locked ytterbium-doped fiber lasers.

  • [1]
    SUGIOKA K, CHENG Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light: Science & Applications,2014,3(4):e149.
    [2]
    GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics,2008,2(4):219-225. doi: 10.1038/nphoton.2008.47
    [3]
    刘友强, 曹银花, 潘飞, 等. 激光加工用半导体激光器的光束变换[J]. 光学精密工程,2012,20(3):455-461. doi: 10.3788/OPE.20122003.0455

    LIU Youqiang, CAO Yinhua, PAN Fei, et al. Beam transformation of diode lasers used in laser processing[J]. Optics and Precision Engineering,2012,20(3):455-461. doi: 10.3788/OPE.20122003.0455
    [4]
    赵力杰, 周艳宗, 夏海云, 等. 飞秒激光频率梳测距综述[J]. 红外与激光工程,2018,47(10):1006008. doi: 10.3788/IRLA201847.1006008

    ZHAO Lijie, ZHOU Yanzong, XIA Haiyun, et al. Overview of distance measurement with femtosecond optical frequency comb[J]. Infrared and Laser Engineering,2018,47(10):1006008. doi: 10.3788/IRLA201847.1006008
    [5]
    谢建东, 严利平, 陈本永, 等. 可调谐激光器激光波长宽范围自动偏频锁定[J]. 光学精密工程,2021,29(2):211-219. doi: 10.37188/OPE.20212902.0211

    XIE Jiandong, YAN Liping, CHEN Benyong, et al. Automatic offset-frequency locking of external cavity diode laser in wide wavelength range[J]. Optics and Precision Engineering,2021,29(2):211-219. doi: 10.37188/OPE.20212902.0211
    [6]
    高宇炜, 方守龙, 武腾飞, 等. 双飞秒激光频率梳光谱测量技术研究进展[J]. 应用光学,2021,42(1):157-175. doi: 10.5768/JAO202142.0107003

    GAO Yuwei, FANG Shoulong, WU Tengfei, et al. Research progress of double femtosecond laser frequency comb spectroscopy measurement technology[J]. Journal of Applied Optics,2021,42(1):157-175. doi: 10.5768/JAO202142.0107003
    [7]
    KAMATA M, OBARA M, GATTASS R R, et al. Optical vibration sensor fabricated by femtosecond laser micromachining[J]. Applied Physics Letters,2005,87(5):1442.
    [8]
    ZHANG C, JIANG Z S, FU S N, et al. Femtosecond laser enabled selective micro-holes drilling on the multicore-fiber facet for displacement sensor application[J]. Optics Express,2019,27(8):10777. doi: 10.1364/OE.27.010777
    [9]
    XU C, WISE F W. Recent advances in fibre lasers for nonlinear microscopy[J]. Nature Photonics,2013,7(11):875-882. doi: 10.1038/nphoton.2013.284
    [10]
    OZEKI Y, ASAI T, SHOU J W, et al. Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics,2018,25(1):1-11.
    [11]
    SCHWEITZER C, BREZIN A, COCHENER B, et al. Femtosecond laser-assisted versus phacoemulsification cataract surgery (FEMCAT): a multicentre participant-masked randomised superiority and cost-effectiveness trial[J]. The Lancet,2020,395(10219):212-224. doi: 10.1016/S0140-6736(19)32481-X
    [12]
    POPMINTCHEV T, CHEN M CH, POPMINTCHEV D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science,2012,336(6086):1287-1291. doi: 10.1126/science.1218497
    [13]
    况庆强, 桑明煌, 聂义友, 等. 被动锁模掺铒光纤激光器中的有理数谐波锁模[J]. 光学精密工程,2009,17(11):2719-2723.

    KUANG Qingqiang, SANG Minghuang, NIE Yiyou, et al. Rational harmonic mode-locking of passively mode-locked erbium-doped fiber laser[J]. Optics and Precision Engineering,2009,17(11):2719-2723.
    [14]
    TANG D Y, ZHAO L M, ZHAO B, et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers[J]. Physical Review A,2005,72(4):043816. doi: 10.1103/PhysRevA.72.043816
    [15]
    赵德双, 刘永智, 黄绣江, 等. 飞秒被动锁模光纤激光器的稳定性研究[J]. 应用光学,2005,26(4):26-29.

    ZHAO Deshuang, LIU Yongzhi, HUANG Xiujiang, et al. Stability of passively mode-locked femtosecond fiber laser[J]. Journal of Applied Optics,2005,26(4):26-29.
    [16]
    HAUS H A, MOORES J D, NELSON L E. Effect of third-order dispersion on passive mode locking[J]. Optics Letters,1993,18(1):51-53. doi: 10.1364/OL.18.000051
    [17]
    LOGVIN Y, KALOSHA V P, ANIS H. Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation[J]. Optics Express,2007,15(3):985. doi: 10.1364/OE.15.000985
    [18]
    DENNIS M L, DULING I N. Third-order dispersion in femtosecond fiber lasers[J]. Optics Letters,1994,19(21):1750-1752. doi: 10.1364/OL.19.001750
    [19]
    LOGVIN Y, ANIS H. Suppression of multi-period instabilities by third-order dispersion in mode-locked Yb-doped fiber lasers[J]. Journal of the Optical Society of America B,2008,25(4):622-632. doi: 10.1364/JOSAB.25.000622
    [20]
    SAKAGUCHI H, SKRYABIN D V, MALOMED B A. Stationary and oscillatory bound states of dissipative solitons created by third-order dispersion[J]. Optics Letters,2018,43(11):2688-2691. doi: 10.1364/OL.43.002688
    [21]
    BLANCO-REDONDO A, DE STERKE C M, SIPE J E, et al. Pure-quartic solitons[J]. Nature Communications,2016,7:10427. doi: 10.1038/ncomms10427
    [22]
    RUNGE A F J, HUDSON D D, TAM K K K, et al. The pure-quartic soliton laser[J]. Nature Photonics,2020,14(8):492-497. doi: 10.1038/s41566-020-0629-6
    [23]
    OLIVIER M, ROY V, PICHÉ M. Third-order dispersion and bound states of pulses in a fiber laser[J]. Optics Letters,2006,31(5):580-582. doi: 10.1364/OL.31.000580
    [24]
    PICHÉ M, CORMIER J F, ZHU X N. Bright optical soliton in the presence of fourth-order dispersion[J]. Optics Letters,1996,21(12):845-847. doi: 10.1364/OL.21.000845
    [25]
    ZHANG Z X, LUO M, CHEN J X, et al. Pulsating dynamics in a pure-quartic soliton fiber laser[J]. Optics Letters,2022,47(7):1750-1753. doi: 10.1364/OL.454038
  • Related Articles

    [1]JIANG Shengguang, CAI Yuan, LI Tiansong, SUN Fengyuan, GUO Wanpeng, LIU Rensen, ZHONG Wolou. Spectral image acquisition system based on angle-tuned narrow-band filter[J]. Journal of Applied Optics.
    [2]CHEN Weiguang, DENG Yong, ZHANG Shulian. Characteristics of cavity tuning of half-external cavity Nd:YAG and Nd:YVO4 microchip solid-state lasers[J]. Journal of Applied Optics, 2023, 44(2): 437-443. DOI: 10.5768/JAO202344.0207002
    [3]HU Tieli, WANG Honghong, LI Siwei, CAO Feng, HU Xinyi, FAN Zhe, YANG Yuxin, GUO Jian, YOU Yue, YANG Ke, LI Hui, YU Yang. Research on temperature control and self-tuning for 30℃~420℃ blackbody[J]. Journal of Applied Optics, 2023, 44(2): 392-397. DOI: 10.5768/JAO202344.0203005
    [4]FENG Yan, TIAN Nan, WANG Jicheng, SANG Tian. Dynamic tuning color filters based on stretchable materials[J]. Journal of Applied Optics, 2019, 40(6): 1174-1180. DOI: 10.5768/JAO201940.0605006
    [5]Bai Bing, Wang Jianzhou, Sun Yanxiao, Chen Yuhua, Bai Yang, Bai Jintao. Watt-level continuous wave orange-red laser with wavelength tunable[J]. Journal of Applied Optics, 2017, 38(2): 309-315. DOI: 10.5768/JAO201738.0207001
    [6]Zhang Xin-ting, An Zhi-yong, Kang Lei. Laser frequency tuning technology based on piezoelectric ceramics[J]. Journal of Applied Optics, 2015, 36(6): 965-970. DOI: 10.5768/JAO201536.0605003
    [7]REN Cheng, YANG Xing-tuan, ZHANG Shu-lian. Cavity tuning characteristics of microchip Nd∶YAG dual-frequency laser[J]. Journal of Applied Optics, 2012, 33(6): 1147-1152.
    [8]XU Hui-zhen, QIU Yi-shen, XU Bin. Wavelength tuning characteristic improvement of external cavity diode lasers[J]. Journal of Applied Optics, 2008, 29(6): 975-977.
    [9]LIU Qi-neng. Theoretical study on photonic crystal tunable filter with multiple channels[J]. Journal of Applied Optics, 2008, 29(4): 639-643.
    [10]TAN Chun-hua, HUANG Xu-guang. Two-dimensional photonic crystal optical switch controlled by polarized light[J]. Journal of Applied Optics, 2008, 29(3): 452-457.
  • Cited by

    Periodical cited type(5)

    1. 许君,鹿楠,李婷,成玲,牛丽,郝天煦,张诚. 基于人体呼吸力学的柔性可穿戴呼吸监测技术研究进展. 纺织学报. 2025(01): 217-226 .
    2. 李红豪,龙建勇,成乐凯,梁桥康. 光纤Bragg光栅力觉传感器在健康医疗领域的应用. 测控技术. 2023(04): 9-21 .
    3. 岳欣琰,杨雅晴,韩潇,洪剑寒,葛烨倩. 基于柔性传感器的智能服装研究进展. 纺织科技进展. 2023(06): 4-8 .
    4. 王磊,柳亦兵,滕伟,黄心伟,刘剑韬. 风电机组叶片无损检测技术研究与进展. 中国电力. 2023(10): 80-95 .
    5. 刘刚坤,李宝福. 基于光纤布拉格光栅的多点压力测量. 计量与测试技术. 2022(08): 57-60+63 .

    Other cited types(8)

Catalog

    Article views (205) PDF downloads (48) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return