Citation: | YU Saiyun, QIU Huaili, LI Jia, ZHU Tao, SONG Fengquan. Whole-process simulation of NaI (TI) scintillator detector response in radiation field[J]. Journal of Applied Optics, 2023, 44(5): 967-974. DOI: 10.5768/JAO202344.0501004 |
NaI (TI) detector is a typical scintillator radiation detector, and its detection process involves radiation energy deposition, generation and transport of visible light signal, photoelectric conversion, signal processing and other physical processes. Firstly, the process of ray particles converting into visible light signal output in crystals was simulated and analyzed by Monte Carlo method, Birks formula and ray tracing program. Combined with the index parameters of photomultiplier tube and signal processing circuit, the pulse voltage signal parameters for the final output of the detector were obtained. Then, the experiment was verified by using Φ50 mm×50 mm NaI (TI) crystal-coupled photomultiplier in 137Cs source radiation field. The experimental results show that the rise/fall time ratio of the output pulse signal of detector is 0.39, which is about 7.69% different than the simulated value of 0.36, indicating that the output results of the simulation calculation model are basically consistent with the measured data, which preliminarily proves the correctness of the simulation calculation model and calculation analysis process. The proposed method is of certain reference significance for deeply understanding transmission law of fluorescent visible light excited by radiation particles in crystal scintillator and optimization design of scintillator radiation detector system.
[1] |
任国浩. 无机闪烁晶体在我国的发展史[J]. 人工晶体学报,2019,48(8):1373-1385. doi: 10.3969/j.issn.1000-985X.2019.08.001
REN Guohao. Development history of inorganic scintillation crystals in China[J]. Journal of Synthetic Crystals,2019,48(8):1373-1385. doi: 10.3969/j.issn.1000-985X.2019.08.001
|
[2] |
KOROLEVA T S, SHULGIN B V, PEDRINI Ch, et al. New scintillation materials and scintiblocs for neutron and γ-rays registration[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 415-423.
|
[3] |
安少康. NPTool模拟NaI(Tl)和LaBr_3(Ce)闪烁体探测器试验研究[J]. 铀矿冶, 2019, 38(3): 198-203.
AN Shaokang. Experimental study on NPTools Simulation of NaI(Tl) and LaBr3(Ce) scintillator detectors[J]. Uranium Minig and Metallurgy, 2019, 38(3): 198-203.
|
[4] |
袁航. NaI(Tl)和CsI(Na)闪烁体探测器的探测性能研究[D]. 北京: 华北电力大学, 2019.
YUAN Hang. Detection performance of NaI(Tl) and CsI(Na) scintillator detectors[D]. Beijing: North China Electric Power University, 2019.
|
[5] |
DEMIR N, KULUÖZTÜRK Z N. Determination of energy resolution for a NaI(Tl) detector modeled with FLUKA code[J]. Nuclear Engineering and Technology,2021,53(11):3759-3763. doi: 10.1016/j.net.2021.05.017
|
[6] |
MOUHTI I, ELANIQUE A, MESSOUS M Y, et al. Validation of a NaI(Tl) and LaBr3(Ce) detector’s models via measurements and Monte Carlo simulations[J]. Journal of Radiation Research and Applied Sciences,2018,11(4):335-339. doi: 10.1016/j.jrras.2018.06.003
|
[7] |
HIRANO Y, ZENIYA T, IIDA H. Monte Carlo simulation of scintillation photons for the design of a high-resolution SPECT detector dedicated to human brain[J]. Annals of Nuclear Medicine,2012,26(3):214-221. doi: 10.1007/s12149-011-0561-4
|
[8] |
MOUATASSIM S, COSTA G J, GUILLAUME G, et al. The light yield response of NE213 organic scintillators to charged particles resulting from neutron interactions[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,1995,359(3):530-536.
|
[9] |
BIRKS J B, FIRK F W K. The theory and practice of scintillation counting[J]. Physics Today,1965,18(8):60.
|
[10] |
BIZARRI G, MOSES W W, SINGH J, et al. An analytical model of nonproportional scintillator light yield in terms of recombination rates[J]. Journal of Applied Physics,2009,105(4):044507. doi: 10.1063/1.3081651
|
[11] |
PAYNE S A, CHEREPY N J, HULL G, et al. Nonproportionality of scintillator detectors: theory and experiment[J]. IEEE Transactions on Nuclear Science,2009,56(4):2506-2512. doi: 10.1109/TNS.2009.2023657
|
[12] |
GAO F, XIE Y, KERISIT S, et al. Yield, variance and spatial distribution of electron–hole pairs in CsI[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2011,652(1):564-567. doi: 10.1016/j.nima.2010.08.063
|
[13] |
WIRTH S, METZGER W, PHAM-GIA K, et al. Impact of photon transport properties on the detection efficiency of scintillator arrays[C]//2006 IEEE Nuclear Science Symposium Conference Record. New York: IEEE, 2006: 2602-2603.
|
[14] |
MENG F, MA X, ZHAO H, et al. A study of polarized light propagation in turbid medium by monte carlo simulations and experiments[C]//2006 International Symposium on Biophotonics, Nanophotonics and Metamaterials. New York: IEEE, 2006: 132-135.
|
[15] |
WANG J G, WANG G Y, XU Z Z. Monte Carlo simulation of photon migration path in turbid media[J]. Chinese Optics Letters,2008,6(7):530-532. doi: 10.3788/COL20080607.0530
|
[16] |
王建岗, 王桂英, 徐至展. 光在分层散射介质中传输行为的蒙特卡罗模拟研究[J]. 光学学报,2000,20(3):346-350. doi: 10.3321/j.issn:0253-2239.2000.03.011
WANG Jiangang, WANG Guiying, XU Zhizhan. Monte Carlo simulations for light propagationin striated scattering medium[J]. Acta Optica Sinica,2000,20(3):346-350. doi: 10.3321/j.issn:0253-2239.2000.03.011
|
[17] |
郑兴荣, 宋小永, 郑燕飞, 等. 基于MATLAB的光传播特性的数值计算[J]. 陇东学院学报,2017,28(5):36-40. doi: 10.3969/j.issn.1674-1730.2017.05.008
ZHENG Xingrong, SONG Xiaoyong, ZHENG Yanfei, et al. Numerical calculation on the propagation characteristics of light based on Matlab[J]. Journal of Longdong University,2017,28(5):36-40. doi: 10.3969/j.issn.1674-1730.2017.05.008
|
[18] |
BRIESMEISTER J F. MCNPTM-A general Monte Carlo N-particle transport code, Version 4C[R]. USA: LA-13709-M, Los Alamos National Laboratory, 2000.
|
[19] |
彭礼韬. MCNP和Geant4在伽马测井领域的应用对比研究[D]. 北京: 华北电力大学, 2021.
PENG Litao. Comparative study on the application of MCNP and Geant4 in well logging[D]. Beijing: School of Nuclear Science and Engineering, 2021.
|
[20] |
马继明, 朱宏权, 王奎禄, 等. 硅酸镥γ图像转换屏荧光弥散特性研究[J]. 应用光学,2010,31(5):752-756. doi: 10.3969/j.issn.1002-2082.2010.05.016
MA Jiming, ZHU Hongquan, WANG Kuilu, et al. Fluorescence dispersion of Lu2SiO5 crystal as a γ-image converter[J]. Journal of Applied Optics,2010,31(5):752-756. doi: 10.3969/j.issn.1002-2082.2010.05.016
|
[21] |
田秀劳. 光波在左手材料中的菲涅尔公式和布儒斯特定律[J]. 光子学报,2006,35(7):1103-1106.
TIAN Xiulao. Fresnel formulate and Brewster law of optical waves in the left-handed materials[J]. Acta Photonica Sinica,2006,35(7):1103-1106.
|
[22] |
BELL I. Introduction to circuit simulation with LTspice-Part 4[J]. Everday Partical Electronics,2019,48(1):48-51.
|
[23] |
KONSTANTINOU G, LECOQ P, BENLLOCH J M, et al. Metascintillators for ultrafast gamma detectors: a review of current state and future perspectives[J]. IEEE Transactions on Radiation and Plasma Medical Sciences,2022,6(1):5-15. doi: 10.1109/TRPMS.2021.3069624
|