CHEN Gengen, SHI Guangfeng, WU Feng, WANG Jinqiu, PEI Leigang, SHI Guoquan. Thermal defocus and compensation analysis of glass-plastic hybrid fixed-focus lens[J]. Journal of Applied Optics, 2023, 44(5): 959-966. DOI: 10.5768/JAO202344.0501003
Citation: CHEN Gengen, SHI Guangfeng, WU Feng, WANG Jinqiu, PEI Leigang, SHI Guoquan. Thermal defocus and compensation analysis of glass-plastic hybrid fixed-focus lens[J]. Journal of Applied Optics, 2023, 44(5): 959-966. DOI: 10.5768/JAO202344.0501003

Thermal defocus and compensation analysis of glass-plastic hybrid fixed-focus lens

More Information
  • Received Date: October 10, 2022
  • Revised Date: December 04, 2022
  • Available Online: July 09, 2023
  • In the glass-plastic hybrid fixed-focus security lens, the material properties of the plastic lens, glass lens and frame are quite different. Under the complex temperature environment, the thermal deformation of the lens mechanical structure and the optical heat dissipation design will jointly affect the image quality. In order to ensure the stability of the lens imaging, according to the test temperature of −40 ℃~80 ℃ of the security lens, the optical, mechanical and thermal integration analysis of the lens was carried out. A finite element model of the thermal structure of the lens was established in Ansys workbench to calculate the thermoelastic deformation of the lens. Zernike polynomial was used to fit the surface shape change of the mirror, and the fitting results were imported into Zemax to judge the influence of temperature load on image quality. The simulation results show that under the ultimate test temperature load, when the base material is polycarbonate mixed with 20% glass fiber, the thermal defocus amount of the simulated optical system itself in Zemax is effectively compensated. When the frame material is polycarbonate mixed with 30% glass fiber, the maximum extrusion strain of the plastic lens is 2.36×10−3 mm. When the frame material is polycarbonate mixed with 20% glass fiber, the maximum extrusion strain of the plastic lens is 0.53×10−3 mm, which can keep the image quality of the lens stable. Finally, through the high and low temperature flange focal length measurement test of lens, the temperature adaptability of the lens and the correctness of the optical-mechanical-thermal integration analysis were verified.

  • [1]
    李诚良. 基于光机热集成分析的空间低温红外光谱仪研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    LI Chengliang. Research on space low temperature infrared spectrometer based on opto-mechanical thermal integration analysis [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2021.
    [2]
    王春雨, 王聪, 牛锦川, 等. 航空相机光学镜头被动消热一体化设计与验证分析[J]. 红外与激光工程,2021,50(3):228-235.

    WANG Chunyu, WANG Cong, NIU Jinchuan, et al. Integrated design and verification analysis of passive heat dissipation of aerial camera optical lens[J]. Infrared and Laser Engineering,2021,50(3):228-235.
    [3]
    刘朋朋, 靳利锋, 赵慧, 等. 低轨道遥感相机光机热一体化分析及优化设计[J]. 红外技术,2022,44(6):614-621.

    LIU Pengpeng, JIN Lifeng, ZHAO Hui, et al. Analysis and optimization design of opto-mechanical-thermal integration of low-orbit remote sensing camera[J]. Infrared Technology,2022,44(6):614-621.
    [4]
    赵紫云. 面向复杂环境的激光器系统光机热耦合分析技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.

    ZHAO Ziyun. Research on optical-mechanical thermal coupling analysis technology of laser system facing complex environment[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2022.
    [5]
    刘囿辰. 力热载荷下拼接式光学窗口研制及光学性能分析[D]. 绵阳: 西南科技大学, 2022.

    LIU Youchen. Development and optical performance analysis of spliced optical window under mechanical and thermal load [D]. Mianyang: Southwest University of Science and Technology, 2022.
    [6]
    BROOME B G . Athermalized mounts for lenses: US 6040950 A[P]. 2001-09-18.
    [7]
    王平, 张国玉, 王伟, 等. 航空变焦距镜头被动消热设计[J]. 光学学报,2012,32(9):258-264.

    WANG Ping, ZHANG Guoyu, WANG Wei, et al. Design of passive heat dissipation for aviation zoom lens[J]. Acta Optics Sinica,2012,32(9):258-264.
    [8]
    陈德富, 李相军, 朱敏. 一种红外镜头的被动式无热补偿设计[J]. 光电技术应用, 2011,26(3):21-23.

    CHENG Defu, LI Xiangjun, ZHU Min. Design of passive athermal compensation of infrared lens[J]. Electro-Optic Technology Application, 2011,26(3):21-23.
    [9]
    张纪承, 罗海燕, 胡广骁, 等. 空间外差拉曼光谱仪成像镜头光机热集成分析[J]. 应用光学,2018,39(3):332-338.

    ZHANG Jicheng, LUO Haiyan, HU Guangxiao, et al. Thermal integration analysis of imaging lens optical machine for space heterodyne Raman spectrometer[J]. Journal of Applied Optics,2018,39(3):332-338.
    [10]
    李福, 阮萍, 徐广州, 等. 红外镜头的光机热集成分析研究[J]. 应用光学,2011,32(3):385-388. doi: 10.3969/j.issn.1002-2082.2011.03.002

    LI Fu, RUAN Ping, XU Guangzhou, et al. Study on optical thermal integration analysis of infrared lens[J]. Journal of Applied Optics,2011,32(3):385-388. doi: 10.3969/j.issn.1002-2082.2011.03.002
    [11]
    吴天祺, 徐熙平, 潘越, 等. 红外长波投影镜头的光机结构设计及热光分析[J]. 长春理工大学学报(自然科学版),2018,41(4):68-71.

    WU Tianqi, XU Xiping, PAN Yue, et al. Optical-mechanical structure design and thermo-optical analysis of infrared long-wave projection lens[J]. Journal of Changchun University of Science and Technology(Natural Science Edition),2018,41(4):68-71.
    [12]
    朱峰, 张宇, 陈骥, 等. 消热差红外镜头热光学特性分析[J]. 激光与红外,2017,47(10):1299-1304. doi: 10.3969/j.issn.1001-5078.2017.10.021

    ZHU Feng, ZHANG Yu, CHEN Ji, et al. Analysis of thermo-optical properties of athermalized infrared lens[J]. Laser and Infrared,2017,47(10):1299-1304. doi: 10.3969/j.issn.1001-5078.2017.10.021
    [13]
    史浩东, 张新, 曲贺盟, 等. 基于硫系玻璃的大相对孔径红外消热差光学系统设计[J]. 光学学报,2015,35(6):249-255.

    SHI Haodong, ZHANG Xin, QU Hemeng, et al. Design of a large relative aperture infrared athermal optical system based on chalcogenide glass[J]. Acta Optics Sinica,2015,35(6):249-255.
    [14]
    王淑岩, 单宝忠, 牛憨笨, 等. Zernike多项式拟合方法及应用[J]. 光学精密工程,2002,10(3):318-323. doi: 10.3321/j.issn:1004-924X.2002.03.020

    WANG Shuyan, SHAN Baozhong, NIU Hanben, et al. Zernike polynomial fitting method and its application[J]. Optics and Precision Engineering,2002,10(3):318-323. doi: 10.3321/j.issn:1004-924X.2002.03.020
    [15]
    王增伟, 赵知诚, 杨溢, 等. 基于刚体运动完备方程的光机热集成分析方法[J]. 红外与激光工程,2022,51(6):245-262.

    WANG Zengwei, ZHAO Zhicheng, YANG Yi, et al. Optical-mechanical-thermal integrated analysis method based on the complete equation of rigid body motion[J]. Infrared and Laser Engineering,2022,51(6):245-262.
    [16]
    WANG Z, OICHOO C, QU W, et al. A new method for improving the accuracy of wavefront fitting with Zernike polynomials[J]. Physics Procedia,2011,19:134-138. doi: 10.1016/j.phpro.2011.06.137
    [17]
    张婷婷, 杨照清, 郭汉明. 线扫描激光雷达光路的光机热集成优化设计[J]. 光学技术,2020,46(6):654-659.

    ZHANG Tingting, YANG Zhaoqing, GUO Hanming. Optical-mechanical-thermal integrated optimization design of line scan lidar optical path[J]. Optical Technique,2020,46(6):654-659.
  • Related Articles

    [1]JIANG Shengguang, CAI Yuan, LI Tiansong, SUN Fengyuan, GUO Wanpeng, LIU Rensen, ZHONG Wolou. Spectral image acquisition system based on angle-tuned narrow-band filter[J]. Journal of Applied Optics.
    [2]CHEN Weiguang, DENG Yong, ZHANG Shulian. Characteristics of cavity tuning of half-external cavity Nd:YAG and Nd:YVO4 microchip solid-state lasers[J]. Journal of Applied Optics, 2023, 44(2): 437-443. DOI: 10.5768/JAO202344.0207002
    [3]HU Tieli, WANG Honghong, LI Siwei, CAO Feng, HU Xinyi, FAN Zhe, YANG Yuxin, GUO Jian, YOU Yue, YANG Ke, LI Hui, YU Yang. Research on temperature control and self-tuning for 30℃~420℃ blackbody[J]. Journal of Applied Optics, 2023, 44(2): 392-397. DOI: 10.5768/JAO202344.0203005
    [4]FENG Yan, TIAN Nan, WANG Jicheng, SANG Tian. Dynamic tuning color filters based on stretchable materials[J]. Journal of Applied Optics, 2019, 40(6): 1174-1180. DOI: 10.5768/JAO201940.0605006
    [5]Bai Bing, Wang Jianzhou, Sun Yanxiao, Chen Yuhua, Bai Yang, Bai Jintao. Watt-level continuous wave orange-red laser with wavelength tunable[J]. Journal of Applied Optics, 2017, 38(2): 309-315. DOI: 10.5768/JAO201738.0207001
    [6]Zhang Xin-ting, An Zhi-yong, Kang Lei. Laser frequency tuning technology based on piezoelectric ceramics[J]. Journal of Applied Optics, 2015, 36(6): 965-970. DOI: 10.5768/JAO201536.0605003
    [7]REN Cheng, YANG Xing-tuan, ZHANG Shu-lian. Cavity tuning characteristics of microchip Nd∶YAG dual-frequency laser[J]. Journal of Applied Optics, 2012, 33(6): 1147-1152.
    [8]XU Hui-zhen, QIU Yi-shen, XU Bin. Wavelength tuning characteristic improvement of external cavity diode lasers[J]. Journal of Applied Optics, 2008, 29(6): 975-977.
    [9]LIU Qi-neng. Theoretical study on photonic crystal tunable filter with multiple channels[J]. Journal of Applied Optics, 2008, 29(4): 639-643.
    [10]TAN Chun-hua, HUANG Xu-guang. Two-dimensional photonic crystal optical switch controlled by polarized light[J]. Journal of Applied Optics, 2008, 29(3): 452-457.
  • Cited by

    Periodical cited type(5)

    1. 许君,鹿楠,李婷,成玲,牛丽,郝天煦,张诚. 基于人体呼吸力学的柔性可穿戴呼吸监测技术研究进展. 纺织学报. 2025(01): 217-226 .
    2. 李红豪,龙建勇,成乐凯,梁桥康. 光纤Bragg光栅力觉传感器在健康医疗领域的应用. 测控技术. 2023(04): 9-21 .
    3. 岳欣琰,杨雅晴,韩潇,洪剑寒,葛烨倩. 基于柔性传感器的智能服装研究进展. 纺织科技进展. 2023(06): 4-8 .
    4. 王磊,柳亦兵,滕伟,黄心伟,刘剑韬. 风电机组叶片无损检测技术研究与进展. 中国电力. 2023(10): 80-95 .
    5. 刘刚坤,李宝福. 基于光纤布拉格光栅的多点压力测量. 计量与测试技术. 2022(08): 57-60+63 .

    Other cited types(8)

Catalog

    Article views (450) PDF downloads (112) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return