ZHOU Jiachun, GAO Tianyuan. Opto-mechanical design of large-aperture near-infrared wavefront detection device[J]. Journal of Applied Optics, 2023, 44(5): 943-951. DOI: 10.5768/JAO202344.0501001
Citation: ZHOU Jiachun, GAO Tianyuan. Opto-mechanical design of large-aperture near-infrared wavefront detection device[J]. Journal of Applied Optics, 2023, 44(5): 943-951. DOI: 10.5768/JAO202344.0501001

Opto-mechanical design of large-aperture near-infrared wavefront detection device

More Information
  • Received Date: February 07, 2023
  • Revised Date: March 25, 2023
  • Available Online: August 09, 2023
  • The main function of an adaptive optics correction system is to correct for wavefront distortion and compensate for wavefront distortion of incident light. In order to measure the wavefront error of the adaptive optics system, a wavefront detection device with a working wavelength of 1 030 nm was developed using non-spherical technology. The device could detect the wavefront of a large-size near-infrared rectangular beam with a clear aperture of 200 mm×80 mm, and the center field of view of the system had a PV value of 0.123 λ and an RMS value of 0.036 1 λ, which indicated the imaging quality was good. Based on the optical design, the structural design of the device was completed and the device was assembled and tested in the laboratory environment. The test results show that the optical and mechanical parameters of the device meet the design specifications and can complete the wavefront detection task of the adaptive optics system.

  • [1]
    CAHOY K L, MARINAN A D, NOVAK B, et al. Wavefront control in space with MEMS deformable mirrors for exoplanet direct imaging[J]. Journal of Micro/Nanolithography MEMS and MOEMS,2014,13(1):011105. doi: 10.1117/1.JMM.13.1.011105
    [2]
    饶长辉, 朱磊, 张兰强, 等. 太阳自适应光学技术进展[J]. 光电工程,2018,45(3):170733.

    RAO Changhui, ZHU Lei, ZHANG Lanqiang, et al. Development of solar adaptive optics[J]. Opto-Electronic Engineering,2018,45(3):170733.
    [3]
    RAO CH H, GU N T, RAO X J, et al. First light of the 1.8 m solar telescope-CLST[J]. Science China Physics, Mechanics & Astronomy,2020,63(10):1-2.
    [4]
    CHEN M, LIU CH, RUI D M, et al. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle[J]. Optics Express,2018,26(4):4230. doi: 10.1364/OE.26.004230
    [5]
    CHEN M, LIU C, RUI D, et al. Experimental results of atmospheric coherent optical communications with adaptive optics[J]. Optics Communications,2019,434:91-96. doi: 10.1016/j.optcom.2018.10.013
    [6]
    芮道满, 刘超, 陈莫, 等. 自适应光学技术在星地激光通信地面站上的应用[J]. 光电工程,2018,45(3):170647.

    RUI Daoman, LIU Chao, CHEN Mo, et al. Application of adaptive optics on the satellite laser communication ground station[J]. Opto-Electronic Engineering,2018,45(3):170647.
    [7]
    WANG D, ZHANG X, DAI W J, et al. 1178 J, 527 nm near diffraction limited laser based on a complete closed-loop adaptive optics controlled off-axis multi-pass amplification laser system[J]. High Power Laser Science and Engineering,2021,9:1-12. doi: 10.1017/hpl.2021.3
    [8]
    LI S S, WANG Y L, LU ZH W, et al. High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system[J]. Optics Express,2015,23(2):681. doi: 10.1364/OE.23.000681
    [9]
    相里微. 大功率激光波前测量系统设计[D]. 西安: 西安电子科技大学, 2012.

    XIANGLI Wei. Design of high power laser wavefront measurement system[D]. Xi'an: Xidian University, 2012.
    [10]
    FOURMAUX S, PAYEUR S, ALEXANDROV A, et al. Laser beam wavefront correction for ultra high intensities with the 200 TW laser system at the advanced laser light source[J]. Optics Express,2008,16(16):11987. doi: 10.1364/OE.16.011987
    [11]
    张禹, 杨忠明, 刘兆军, 等, 大口径多光谱通道波前测量系统设计[J]. 红外与激光工程, 2020, 49(8): 20190559.

    ZHANG Yu, YANG Zhongming, LIU Zhaojun, et al. Design of large aperture multi-spectra channel wavefront measurement system[J]. Infrared and Laser Engineering, 2020, 49(8): 20190559.
    [12]
    张禹. 共轴式大口径多光谱通道波前测量系统的研究[D]. 济南: 山东大学, 2020.

    ZHANG Yu. Research on coaxial large aperture multispectral wavefront measurement system[D]. Jinan: Shandong University, 2020.
    [13]
    吴道胜. 相位差图像重建技术在液晶自适应光学系统中的应用研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.

    WU Daosheng. Application of phase difference image reconstruction technology in liquid crystal adaptive optical system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019.
    [14]
    郭骏立. 视频相机反射镜组件结构设计及其胶结工艺研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.

    GUO Junli. Structural design and cementing technology of mirror assembly for video camera[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.
    [15]
    邢辉, 焦文春, 王昀. 透射式红外镜头的高精度定心装调[J]. 红外,2013,34(9):19-23. doi: 10.3969/j.issn.1672-8785.2013.09.004

    XING Hui, JIAO Wenchun, WANG Yun. High precision assembling of diffractive infrared lens[J]. Infrared,2013,34(9):19-23. doi: 10.3969/j.issn.1672-8785.2013.09.004
  • Related Articles

    [1]SHEN Wei, SHEN Wei, HU Xin, WAN Xiaojin, YU Hao, XU Yingwen, HU Chengyong, DENG Chuanlu, HUANG Yi. Research on Φ-OTDR disturbance localization method based on differential SG-NLM algorithm[J]. Journal of Applied Optics, 2025, 46(2): 319-326. DOI: 10.5768/JAO202546.0202004
    [2]CHEN Qingjiang, WANG Qiaoying. Image deblurring based on multiple local residual connection attention network[J]. Journal of Applied Optics, 2023, 44(2): 337-344. DOI: 10.5768/JAO202344.0202006
    [3]ZHANG Xinwei, LI Jun, ZHANG Dingbo, YAN Ruijin, TIAN Biao, DING Guoshen, YIN Heyi, MA Tian, WANG Weifeng, ZHAI Xiaowei. Real-time positioning technology of train based on optical fiber coherent Rayleigh backscattering[J]. Journal of Applied Optics, 2022, 43(5): 994-1000. DOI: 10.5768/JAO202243.0508001
    [4]WANG Gang, XIAO Yufeng, ZHENG Youneng, TIAN Xinghao. Reconstruction and localization of radioactive area fusing images from Kinect and γ camera[J]. Journal of Applied Optics, 2020, 41(5): 965-972. DOI: 10.5768/JAO202041.0502005
    [5]Miao Lijun, Che Ziyuan. Visual locating of mobile robot based on adaptive down sampling[J]. Journal of Applied Optics, 2017, 38(3): 429-433. DOI: 10.5768/JAO201738.0302008
    [6]Li Xiao-lei, Pan Jin-xiao, Liu Bin, Chen Ping, Wei Jiao-tong. Detection algorithm of assembly coaxality in local imaging[J]. Journal of Applied Optics, 2016, 37(1): 96-99. DOI: 10.5768/JAO201637.0103005
    [7]YAN De-ke, SUN Chuan-dong, FENG Li, HE Hao-dong, ZHU Shao-lan. ADesign of driving system for high power and narrowpulse-width semiconductor laser[J]. Journal of Applied Optics, 2011, 32(1): 165-169.
    [8]WANG Lei, LI Gao-ping, YANG Zhao-jin, YANG Hong-ru, LIANG Yan-xi. Research on metrology method for laser power and energy[J]. Journal of Applied Optics, 2006, 27(supp): 41-46.
    [9]LIANG Yan-xi. Development Analysis of Optoelectronic Integer Integrated Technology and Optoelectronic System[J]. Journal of Applied Optics, 2005, 26(1): 1-3.
    [10]JIAO Bin-liang, ZHENG Sheng-xuan. Progress in Optical Current Transducer Technique for Power Systems[J]. Journal of Applied Optics, 2004, 25(6): 47-53.
  • Cited by

    Periodical cited type(6)

    1. 姚东,高波,宋英政,李群,高贵龙. 激光瞬态光栅激励下结构的超声响应特性研究. 光子学报. 2022(09): 225-235 .
    2. 周航,张斌,冯其波,崔建英,梁晨,黄悦朗. 环形光源激发超声进行缺陷检测的数值研究. 激光技术. 2021(02): 168-173 .
    3. 徐志祥,王铮恭,黄义敏,王雨. 激光超声检测带过渡圆角平板表面缺陷的数值研究. 应用光学. 2020(01): 214-219 . 本站查看
    4. 张智望,王强,谷小红,赵亚,吴琳琳,朱凯. 基于分布式光纤的埋地自来水管多点泄漏定位方法分析. 应用光学. 2020(01): 228-234 . 本站查看
    5. 徐志祥,杨帆,关守岩,李连福. 基于表面波增强效应的圆柱表面缺陷检测方法研究. 激光与红外. 2020(10): 1183-1189 .
    6. 徐志祥,王铮恭,王雨,黄义敏. 激光激发超声波检测带涂层铝板的表面缺陷. 机械工程与自动化. 2019(05): 162-163+166 .

    Other cited types(6)

Catalog

    Article views (301) PDF downloads (94) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return