GAO Long, AN Chao, TAO Yuliang. 355 nm optical frequency discriminator and closed-loop control system for spaceborne wind lidar[J]. Journal of Applied Optics, 2023, 44(4): 904-913. DOI: 10.5768/JAO202344.0407002
Citation: GAO Long, AN Chao, TAO Yuliang. 355 nm optical frequency discriminator and closed-loop control system for spaceborne wind lidar[J]. Journal of Applied Optics, 2023, 44(4): 904-913. DOI: 10.5768/JAO202344.0407002

355 nm optical frequency discriminator and closed-loop control system for spaceborne wind lidar

More Information
  • Received Date: November 17, 2022
  • Revised Date: January 09, 2023
  • Available Online: March 21, 2023
  • The three-channel 355 nm optical frequency discriminator is widely used in the frequency discrimination of the backscattered signal of the space-borne wind lidar, which is the core component to discriminate the wind speed Doppler frequency shift in the double-edge method, and its parameters and reliabilities determine the detection accuracy of the system. A 355 nm three-channel etalon module based on piezoelectric transducer (PZT) crystal tuning was developed, with the effective diameter of 35 mm, the peak transmittance of 75%, the free spectral range of 12.5 GHz, and the full width at half maximum of 1.7 GHz. Through the three-channel test system, the parameters including free spectral range, full width at half maximum, peak transmittance, and tuning coefficient were tested. The test results show that when the external driving voltage is 75 V, the peak transmittances of the three channels are 0.859, 0.878, and 0.735, respectively. The full width at half maximum is 1.843 GHz, 1.882 GHz, and 1.611 GHz, respectively. The tuning coefficients are 1.96 GHz/V, 1.93 GHz/V, 1.88 GHz/V, respectively. In view of the inconsistent tuning coefficients of three channels of the PZT crystal of the optical frequency discrimination module, the influence range of the analysis on the wind speed error is ±0.1m/s. Through the test of the closed-loop control system, the system can realize the real-time locking of the 355 nm laser emission frequency, solve the problems caused by the inconsistent initial position of the optical frequency discrimination module in each working state, improve the frequency discrimination of wind speed, and can achieve the stable locking time of more than 30 minutes, which meets the application requirements of space-borne wind lidar. Simulation studies show that when the interval of three-channel optical frequency discrimination module changes by 0.08 nm, the resulting wind speed error is 1 m/s.

  • [1]
    SUN D S, ZHONG Z Q, ZHOU J, et al. Accuracy analysis of the fabry-perot etalon based Doppler wind lidar[J]. Optical Review,2005,12(5):409-414. doi: 10.1007/s10043-005-0409-z
    [2]
    韩潇, 曹珺雯, 焦建超, 等. 面向空间光学遥感器的增材制造技术的发展与应用[J]. 航天返回与遥感,2021,42(1):74-83. doi: 10.3969/j.issn.1009-8518.2021.01.009

    HAN Xiao, CAO Junwen, JIAO Jianchao, et al. Applications and development of additive manufacturing for space optical remote sensors[J]. Spacecraft Recovery & Remote Sensing,2021,42(1):74-83. doi: 10.3969/j.issn.1009-8518.2021.01.009
    [3]
    潘俏, 朱嘉诚, 杨子江, 等. 星载高光谱碳监测光学载荷的研究进展[J]. 航天返回与遥感,2021,42(6):34-44. doi: 10.3969/j.issn.1009-8518.2021.06.004

    PAN Qiao, ZHU Jiacheng, YANG Zijiang, et al. Research progress of spaceborne hyperspectral optical payloads for carbon monitoring[J]. Spacecraft Recovery & Remote Sensing,2021,42(6):34-44. doi: 10.3969/j.issn.1009-8518.2021.06.004
    [4]
    IRGANG T D, HAYS P B, SKINNER W R. Two-channel direct-detection Doppler lidar employing a charge-coupled device as a detector[J]. Applied Optics,2002,41(6):1145-1155. doi: 10.1364/AO.41.001145
    [5]
    KORB C L, GENTRY B M, XINGFU S L, et al. Theory of the double-edge technique for Doppler lidar wind measurement[J]. Applied Optics,1998,37(15):3097-3104. doi: 10.1364/AO.37.003097
    [6]
    STEPHEN M, FAHEY M, MILLER I. Solid, 3-mirror fabry-perot etalon[J]. Applied Optics,2017,56(10):2636-2640. doi: 10.1364/AO.56.002636
    [7]
    张晨阳, 王春辉, 战蓝, 等. 星载光子探测激光雷达指向调整机构的理论分析[J]. 航天返回与遥感,2019,40(5):84-94. doi: 10.3969/j.issn.1009-8518.2019.05.010

    ZHANG Chenyang, WANG Chunhui, ZHAN Lan, et al. Theoretical analysis of fast steering mechanism on spaceborne photon detection lidar[J]. Spacecraft Recovery & Remote Sensing,2019,40(5):84-94. doi: 10.3969/j.issn.1009-8518.2019.05.010
    [8]
    郭金家, 刘智深, 孙大鹏, 等. 高光谱碘分子和双边缘多普勒测风激光雷达技术比较[J]. 中国海洋大学学报(自然科学版),2004,34(3):489-496. doi: 10.16441/j.cnki.hdxb.2004.03.021

    GUO Jinjia, LIU Zhishen, SUN Dapeng, et al. Comparison between high spectral iodine filter andDouble-edge Doppler wind lidar techniques[J]. Journal of Ocean University of Qingdao,2004,34(3):489-496. doi: 10.16441/j.cnki.hdxb.2004.03.021
    [9]
    JENNINGS J, HALVERSON S, TERRIEN R, et al. Frequency stability characterization of a broadband fiber Fabry-Pérot interferometer[J]. Optics Express,2017,25(14):15599-15613. doi: 10.1364/OE.25.015599
    [10]
    MCKAY J A. Fabry-Perot etalon aperture requirements for direct detection Doppler wind lidar from Earth orbit[J]. Applied Optics,1999,38(27):5859-5866. doi: 10.1364/AO.38.005859
    [11]
    GENTRY B M, WENG C Y. Edge technique: theory and application to the lidar measurement of atmospheric wind[J]. Applied Optics,1992,31(21):4202-4213. doi: 10.1364/AO.31.004202
    [12]
    MCGINTY C, REICH R, CLARK H, et al. Design of a sensitive uncooled thermal imager based on a liquid crystal Fabry-Perot interferometer[J]. Applied Optics,2018,57(28):8264-8271. doi: 10.1364/AO.57.008264
    [13]
    HAN Y L, SUN D S, HAN F, et al. Demonstration of daytime wind measurement by using mobile Rayleigh Doppler Lidar incorporating cascaded Fabry-Perot etalons[J]. Optics Express,2019,27(23):34230-34246. doi: 10.1364/OE.27.034230
    [14]
    ZHAO Q L, YUNG T K, WANG X, et al. Correction of numerical aperture effect on reflection phase measurement using a thick-gap Fabry-Perot etalon[J]. Applied Optics,2017,56(15):4392-4397. doi: 10.1364/AO.56.004392
    [15]
    MCGILL M J, SPINHIRNE J D. Comparison of two direct-detection Doppler lidar techniques[J]. Optical Engineering,1998,37(10):2675-2686. doi: 10.1117/1.601804
  • Related Articles

    [1]XU Jintao, TIAN Ailing. Ripple free minimum beat control for digital closed-loop fiber optic gyroscopes[J]. Journal of Applied Optics, 2023, 44(3): 693-698. DOI: 10.5768/JAO202344.0308002
    [2]LI Kewu, WANG Shuang. Calibration and stability control for photoelastic modulator using feedback optical path[J]. Journal of Applied Optics, 2022, 43(5): 935-942. DOI: 10.5768/JAO202243.0503002
    [3]CHEN Yongpeng, DUAN Hailong, WANG Weibo, WANG Wenyan, FU Panlong, LI Qi. Optimal control of upper anti-stabilization aiming system based on acceleration feedback[J]. Journal of Applied Optics, 2021, 42(6): 997-1005. DOI: 10.5768/JAO202142.0601008
    [4]Chang Jinda, Ding Zuokai, Zhao Chuangshe, Liu Jingli. Integrated design method of control loop in optoelectronic tracking system[J]. Journal of Applied Optics, 2016, 37(4): 503-509. DOI: 10.5768/JAO201637.0401002
    [5]MA He, WU Ping, ZHAO Yu. An infrared detection range model based on discrete spectral atmosphere transmittance[J]. Journal of Applied Optics, 2013, 34(3): 532-536.
    [6]LIU Xiao-qiang, LU Feng, LIANG Xiao-dong, XING Jun-zhi, SHOU Shao-jun. Error reduction of optoelectronic tracking platform for switching fromcompound control to feedback control[J]. Journal of Applied Optics, 2013, 34(1): 51-55.
    [7]ZHENG Yi, XING Jun-hong, JIAO Ming-xing, WANG Wei-liang. Control system for stabilizing output power of diode-pumped single-frequency Nd∶YAG laser at 1 064 nm[J]. Journal of Applied Optics, 2011, 32(4): 791-796.
    [8]HU Wen-wen, GU Xiao-chao, HUANG Li-li, YANG Zhi-wen. Design of two-dimensional rotation mechanism and closed-loop servo system[J]. Journal of Applied Optics, 2008, 29(supp): 12-14.
    [9]LI Hong-guang, YU Yun-qi, SONG Ya-min. Application of optimal control for stabilization loop of vehicle inertial platform[J]. Journal of Applied Optics, 2007, 28(3): 251-256.
    [10]WANG Xiao-qi, ZHAO Zhen-hai, LI Jing-di, LI Guang-liang. Application of Regenerative Feedback Technology in Tracking Control System[J]. Journal of Applied Optics, 2004, 25(6): 1-4.

Catalog

    Article views (157) PDF downloads (26) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return