Citation: | MO Yongchao, LIU Lei, QIAN Yunsheng, HU Chaolong, BAI Xiaofeng, SHI Feng. Improved apparent distance detection model of low-level-lightnight vision system[J]. Journal of Applied Optics, 2023, 44(4): 887-897. DOI: 10.5768/JAO202344.0406002 |
Apparent distance is an important parameter to evaluate the performance of low-level-light (LLL) night vision imaging system. With the development of LLL night vision detection technology, the simulation results of the classical apparent distance model show some deviations from the actual measurement data, especially the simulation results are not ideal under the low illumination of 10-3 lx, which causes great obstacles to the practical application of the LLL night vision system. Aiming at this problem, the classical apparent distance model was modified from three aspects: the first is considering the influence of atmospheric transmittance on the apparent distance of LLL night vision system and modifying the atmospheric transmittance factors in the classical apparent distance model, the second is optimizing the apparent distance model based on noise factors of image intensifier, the third is considering the influence of human visual transmission characteristics on the apparent distance of LLL night vision system, and the simplified human visual system was added into the transfer function model of the system. The improved apparent distance model was derived, and its effectiveness as well as practicability were verified by the field test data, which had certain guiding significance for the design, evaluation and application of LLL night vision system.
[1] |
ROSE A. The sensitivity performance of the human eye on an absolute scale[J]. Journal of the Optical Society of America,1948,38(2):196-208. doi: 10.1364/JOSA.38.000196
|
[2] |
DEVRIES H L. The quantum character of light and its bearing upon threshold of vision[J]. Physica,1954,7(7):553-556.
|
[3] |
COLTMAN J W, ANDERSON A E. Noise limitations to resolving power in electronic imaging[J]. Proceedings of the IRE,1960,48(5):858-865. doi: 10.1109/JRPROC.1960.287622
|
[4] |
SCHAGEN P. Electronic aids to night vision[J]. Electronics and Power,1975,21(7):437. doi: 10.1049/ep.1975.0482
|
[5] |
ROSELLF A, WILLSON R H. Basics of detection recognition and identification in clectro-optical formed imagery[J]. International Society for Optics and Photonics, 1973, 33: 107-119.
|
[6] |
SCHNITZLER A D. Visual systems for night vision[M]//Photoelectronic Imaging Devices. Boston, MA: Springer US, 1971: 89-108.
|
[7] |
RICHARDS E A. Limitations in optical imaging devices at low light levels[J]. Applied Optics,1969,8(10):1999-2005. doi: 10.1364/AO.8.001999
|
[8] |
BLACKLER F G. Image intensifiers and night viewing system performance[C]// Electron-Optics/Laser International'82 UK Conference Proceedings. London: Butterworth Scientific Press, 1982: 130-139.
|
[9] |
邹异松. 成象器件的图象探测特性[J]. 北京工业学院学报,1982,2(1):17-28.
ZOU Yisong. Image detection characteristics of imaging devices[J]. Journal of Beijing Institute of Technology,1982,2(1):17-28.
|
[10] |
艾克聪, 周立伟, 曾桂林, 等. 微光夜视系统新的阈值探测理论和视距探测方程研究[J]. 应用光学,2002,23(5):1-6.
AI Kecong, ZHOU Liwei, ZENG Guilin, et al. Research on the new threshold detection theory and apparent distance detecting equation for low light level imaging system[J]. Journal of Applied Optics,2002,23(5):1-6.
|
[11] |
刘磊, 常本康. 微光成像系统视距理论公式的修正[J]. 光学学报,2003,23(6):761-765.
LIU Lei, CHANG Benkang. The revised formula for visual range of low light level imaging system[J]. Acta Optica Sinica,2003,23(6):761-765.
|
[12] |
张竹平, 李力, 贾星蕊, 等. 微光夜视仪分辨力计算方程的修正[J]. 红外技术,2014,36(11):930-933.
ZHANG Zhuping, LI Li, JIA Xingrui, et al. Correction on resolution calculation formula for low light level night vision device[J]. Infrared Technology,2014,36(11):930-933.
|
[13] |
刘松涛, 王博林, 王龙涛. 微光夜视仪的作用距离估算与仿真[J]. 激光与红外,2016,46(4):462-465.
LIU Songtao, WANG Bolin, WANG Longtao. Estimation and simulation of operation range for low-light-level night vision device[J]. Laser & Infrared,2016,46(4):462-465.
|
[14] |
金伟其, 张琴, 王霞, 等. 一种改进的直视型微光夜视系统视距模型[J]. 光子学报,2020,49(4):61-70.
JIN Weiqi, ZHANG Qin, WANG Xia, et al. An improved apparent distance model for direct-viewlow-light-level night vision system[J]. Acta Photonica Sinica,2020,49(4):61-70.
|
[15] |
蒋先进. 微光电视[M]. 北京: 国防工业出版社, 1984: 389-411.
JIANG Xianjin. Low-light-level television[M]. Beijing: National Defense Industry Press, 1984: 389-411.
|
[16] |
BELL R L. Noise figure of the MCP image intensifier tube[J]. IEEE Transactions on Electron Devices,1975,22(10):821-829. doi: 10.1109/T-ED.1975.18229
|
[17] |
JACOBSON R E. An evaluation of image quality metrics[J]. The Journal of Photographic Science,1995,43(1):7-16. doi: 10.1080/00223638.1995.11738604
|
[18] |
BARTEN P G J. Formula for the contrast sensitivity of the human eye[J]. SPIE, 2003, 5294: 231-238.
|
[19] |
CAMPBELL F W, ROBSON J G. Application of Fourier analysis to the visibility of gratings[J]. The Journal of Physiology,1968,197(3):551-566. doi: 10.1113/jphysiol.1968.sp008574
|
[20] |
WATANABE A, MORI T, NAGATA S, et al. Spatial sine-wave responses of the human visual system[J]. Vision Research,1968,8(9):1245-1263. doi: 10.1016/0042-6989(68)90031-X
|
[21] |
刘磊. 激光助视/微光夜视系统视距评估研究[D]. 南京: 南京理工大学, 2005.
LIU Lei. Visual range evaluation of LLL night vision system with laser illuminator[D]. Nanjing: Nanjing University of Science and Technology, 2005.
|
[22] |
向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 1999: 234-235.
XIANG Shiming, NI Guoqiang. The principle of photoelectronic imaging devices[M]. Beijing: National Defense Industry Press, 1999: 234-235.
|
[23] |
白廷柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2006: 31-51.
BAI Tingzhu, JIN Weiqi. Principle and technology of photoelectric imaging[M]. Beijing: Beijing Insititute of Technology Press, 2006: 31-51.
|
[24] |
于超, 张蕾. 南京北郊大气能见度影响因子研究[J]. 三峡生态环境监测,2019,4(1):56-60.
YU Chao, ZHANG Lei. The influence factors of atmospheric visibility in Nanjing’s northern suburb[J]. Ecology and Environmental Monitoring of Three Gorges,2019,4(1):56-60.
|