YANG Yuxin, WANG Xuexin, ZHANG Xu, YU Bing, LI Siwei, XIE Yi, YAN Xiaoyu. Emissivity calibration technology for infrared stealth coatings at ambient temperature[J]. Journal of Applied Optics, 2023, 44(3): 655-660. DOI: 10.5768/JAO202344.0304004
Citation: YANG Yuxin, WANG Xuexin, ZHANG Xu, YU Bing, LI Siwei, XIE Yi, YAN Xiaoyu. Emissivity calibration technology for infrared stealth coatings at ambient temperature[J]. Journal of Applied Optics, 2023, 44(3): 655-660. DOI: 10.5768/JAO202344.0304004

Emissivity calibration technology for infrared stealth coatings at ambient temperature

More Information
  • Received Date: May 25, 2022
  • Revised Date: November 06, 2022
  • Available Online: February 02, 2023
  • As the key index of stealth performance of aircraft skin, the emissivity is an important means to evaluate the comprehensive stealth performance of the aircraft. The spectral emissivity measurement method of infrared stealth coatings was introduced, and the corresponding calibration device at ambient temperature was established. A Fourier transform spectrometer based on Michelson interference theory was designed to realized the spectral splitting. The sample chamber with gold-plated integrating sphere was used to realize the vertical incidence and diffuse receiving of the signal, and the accurate measurement for spectral emissivity of stealthy coating was realized. A traceability method using diffuse reflection films as the reference standard was proposed, which realized the traceability of calibration device. Finally, the spectral emissivity of brass and other samples was measured by using the proposed calibration device, and the measurement results with a spectral range of 3 μm~12 μm were obtained. The measurement uncertainty of spectral emissivity is better than 3.2% (k=2).

  • [1]
    文娇, 李介博, 孙井永, 等. 红外探测与红外隐身材料研究进展[J]. 航空材料学报,2021,41(3):66-82. doi: 10.11868/j.issn.1005-5053.2021.000028

    WEN Jiao, LI Jiebo, SUN Jingyong, et al. Research progress of infrared detection and infrared stealth materials[J]. Journal of Aeronautical Materials,2021,41(3):66-82. doi: 10.11868/j.issn.1005-5053.2021.000028
    [2]
    谌玉莲, 李春海, 郭少云, 等. 红外隐身材料研究进展[J]. 红外技术,2021,43(4):312-323.

    SHEN Yulian, LI Chunhai, GUO Shaoyun, et al. Research development of infrared stealth materials[J]. Infrared Technology,2021,43(4):312-323.
    [3]
    桑建华. 飞行器隐身技术[M]. 北京: 航空工业出版社, 2013: 17-20.

    SANG Jianhua. Low-observable technologies of aircraft[M]. Beijing: Aviation Industry Press, 2013: 17-20.
    [4]
    周亮, 许卫东, 张月. 低发射率材料红外隐身效果研究[J]. 电子技术,2021,50(7):46-47.

    ZHOU Liang, XU Weidong, ZHANG Yue. Study on infrared stealth effect of low emissivity materials[J]. Electronic Technology,2021,50(7):46-47.
    [5]
    梁晓东, 王佳, 姚林海, 等. 迎头方向隐身导弹红外辐射特性分析[J]. 应用光学,2022,43(1):41-44. doi: 10.5768/JAO202243.0101007

    LIANG Xiaodong, WANG Jia, YAO Linhai, et al. Infrared radiation characteristics of head-on stealth missile[J]. Journal of Applied Optics,2022,43(1):41-44. doi: 10.5768/JAO202243.0101007
    [6]
    丁文皓, 张霞, 方奇. 红外辐射特性校准技术研究进展[J]. 宇航计测技术,2021,41(1):9-14. doi: 10.12060/j.issn.1000-7202.2021.01.02

    DING Wenhao, ZHANG Xia, FANG Qi. Research progress of infrared radiation characteristic calibration technology[J]. Journal of Astronautic Metrology and Measurement,2021,41(1):9-14. doi: 10.12060/j.issn.1000-7202.2021.01.02
    [7]
    王学新, 闫晓宇, 岳文龙, 等. 国防红外辐射计量技术[J]. 应用光学,2016,37(1):27-31.

    WANG Xuexin, YAN Xiaoyu, YUE Wenlong, et al. Technology of infrared radiation measurement in national defense metrology[J]. Journal of Applied Optics,2016,37(1):27-31.
    [8]
    王学新, 岳文龙, 杨鸿儒, 等. IRS400型材料发射率测试装置的研制[J]. 应用光学,2015,36(2):272-276. doi: 10.5768/JAO201536.0203006

    WANG Xuexin, YUE Wenlong, YANG Hongru, et al. Development of measurement equipment for IRS400 type material emissivity[J]. Journal of Applied Optics,2015,36(2):272-276. doi: 10.5768/JAO201536.0203006
    [9]
    戴景民, 宋扬, 王宗伟. 光谱发射率测量技术[J]. 红外与激光工程,2009,38(4):710-715. doi: 10.3969/j.issn.1007-2276.2009.04.029

    DAI Jingmin, SONG Yang, WANG Zongwei. Review of spectral emissivity measurement[J]. Infrared and Laser Engineering,2009,38(4):710-715. doi: 10.3969/j.issn.1007-2276.2009.04.029
    [10]
    王学新, 杨鸿儒, 俞兵, 等. 红外目标等立体角标定和测量方法研究[J]. 应用光学,2018,39(4):518-521.

    WANG Xuexin, YANG Hongru, YU Bing, et al. Calibration and measurement method for IR target under the same solid angle[J]. Journal of Applied Optics,2018,39(4):518-521.
    [11]
    郑克哲. 光学计量[M]. 北京: 原子能出版社, 2002: 155- 157.

    ZHENG Kezhe. Optical metrology[M]. Beijing: Atomic Press, 2002: 155- 157.
    [12]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 光学仪器术语: GB/T 13962—2009[S]. 北京: 中国标准出版社, 2010: 2-4.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Optical instruments—vocabulary: GB/T 13962—2009[S]. Beijing: Standards Press of China, 2010: 2-4.
    [13]
    国防科学技术工业委员会. 漫反射假目标通用规范: GJB 3260-98[S]. 北京: 军标出版发行部, 1998: 7-8.

    Commission of Science, Technology and Industry for National Defence. General specification for diffused pseudo-targets: GJB 3260-98[S]. Beijing: Military Standard Publishing and Distribution Department, 1998: 7-8.
    [14]
    中华人民解放军总装备部. 材料和涂层反射率和发射率测试方法: GJB 5023 -2015[S]. 北京: 军标出版发行部, 2015: 2.

    GAD of the PLA. The method of measuring reflectivity and emissivity for material and coating: GJB 5023 -2015[S]. Beijing: Military Standard Publishing and Distribution Department, 2015: 2.
    [15]
    范毅, 戴景民, 褚载祥. 积分球反射法测量铌的发射率随温度的变化[J]. 上海交通大学学报,2003,37(2):285-288. doi: 10.3321/j.issn:1006-2467.2003.02.036

    FAN Yi, DAI Jingmin, CHU Zaixiang. Normal spectral emissivity changes of niobium measured by a pulse heating reflectometric technique[J]. Journal of Shanghai Jiao Tong University,2003,37(2):285-288. doi: 10.3321/j.issn:1006-2467.2003.02.036
    [16]
    张宇峰, 戴景民, 张昱, 等. 基于积分球反射计的红外光谱发射率测量系统校正方法[J]. 光谱学与光谱分析,2013,33(8):2267-2271. doi: 10.3964/j.issn.1000-0593(2013)08-2267-05

    ZHANG Yufeng, DAI Jingmin, ZHANG Yu, et al. Correction method for infrared spectral emissivity measurement system based on integrating sphere reflectometer[J]. Spectroscopy and Spectral Analysis,2013,33(8):2267-2271. doi: 10.3964/j.issn.1000-0593(2013)08-2267-05
    [17]
    吴江辉, 高教波, 李建军. 固体材料定向光谱发射率测量装置研究及误差分析[J]. 应用光学,2010,31(4):597-601. doi: 10.3969/j.issn.1002-2082.2010.04.019

    WU Jianghui, GAO Jiaobo, LI Jianjun. Directional spectral emissivity measurement of solid materials and its error analysis[J]. Journal of Applied Optics,2010,31(4):597-601. doi: 10.3969/j.issn.1002-2082.2010.04.019
    [18]
    余时帆, 崔超, 王晓, 等. 固定发射率工作用辐射温度计校准方法研究[J]. 计量学报,2017,38(1):40-42. doi: 10.3969/j.issn.1000-1158.2017.01.08

    YU Shifan, CUI Chao, WANG Xiao, et al. The calibration method of working rediation thermometer with fixed emissivity[J]. Acta Metrologica Sinica,2017,38(1):40-42. doi: 10.3969/j.issn.1000-1158.2017.01.08
    [19]
    王宗伟, 戴景民, 何小瓦, 等. 超高温FTIR光谱发射率测量系统的线性度分析[J]. 光谱学与光谱分析,2012,32(2):313-316. doi: 10.3964/j.issn.1000-0593(2012)02-0313-04

    WANG Zongwei, DAI Jingmin, HE Xiaowa, et al. The linearity analysis of ultrahigh temperature FTIR spectral emissivity measurement system[J]. Spectroscopy and Spectral Analysis,2012,32(2):313-316. doi: 10.3964/j.issn.1000-0593(2012)02-0313-04
    [20]
    王学新, 杨鸿儒, 吴李鹏, 等. MRTD高精度测试和校准技术研究[J]. 应用光学,2020,41(5):1026-1031. doi: 10.5768/JAO202041.0503004

    WANG Xuexin, YANG Hongru, WU Lipeng, et al. Research on high precision MRTD testing and calibration technology[J]. Journal of Applied Optics,2020,41(5):1026-1031. doi: 10.5768/JAO202041.0503004
    [21]
    王中宇, 刘智敏, 夏新涛. 测量误差与不确定度评定[M]. 北京: 科学出版社, 2008: 19.

    WANG Zhongyu, LIU Zhimin, XIA Xintao. Measurement error and uncertainty evaluation[M]. Beijing: Science Press, 2008: 19.
    [22]
    国家质量监督检验检疫总局. 测量不确定度评定与表示: JJF 1059.1—2012[S]. 北京: 中国标准出版社, 2013: 3-25.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Evaluation and expression of uncertaintv in measurement: JJF 1059.1—2012[S]. Beijing: Standards Press of China, 2013: 3-25.
  • Related Articles

    [1]ZHANG Hanlin, ZHANG Rongzhu. Defocusing error correction method based on error extraction algorithm assisted installation and adjustment[J]. Journal of Applied Optics, 2024, 45(6): 1245-1251. DOI: 10.5768/JAO202445.0603005
    [2]LU Daju, ZHANG Dayong, ZENG Litang, ZHANG Kai, YANG Hao, ZHANG Peiyu. Guidance error correction method based on target track[J]. Journal of Applied Optics, 2023, 44(5): 1088-1094. DOI: 10.5768/JAO202344.0503005
    [3]YANG Chao, ZHOU Peng, ZHOU Runsen, GAO Xu, XUE Changxi. Research on on-line correction technology of ruled grating curved error[J]. Journal of Applied Optics, 2019, 40(4): 658-662. DOI: 10.5768/JAO201940.0403005
    [4]ZHANG Wenying, ZHU Haoran. Error analysis and correction of circular grating angle measurement system[J]. Journal of Applied Optics, 2019, 40(3): 399-403. DOI: 10.5768/JAO201940.0301007
    [5]WANG Ke-wei, MA Chao-jie, CHEN Wei, ZHANG Fan. Error analysis for gate centroid tracking algorithm of infrared imaging[J]. Journal of Applied Optics, 2009, 30(2): 353-356.
    [6]AN Ya-dong, HE Jun-hua, CANG Yu-ping, CHEN Liang-yi. Effect of penta-prism error on parallelism detection[J]. Journal of Applied Optics, 2007, 28(5): 649-653.
    [7]CHANG Shan, CAO Yiping, CHEN Yong-quan. Influence of beam turning error of pentagonal prism on wavefront measurement[J]. Journal of Applied Optics, 2006, 27(3): 186-191.
    [8]YANG Peng-li. Elimination method of adjustment error in measurement of aspheric optical elements[J]. Journal of Applied Optics, 2006, 27(supp): 58-60.
    [9]XIA Zhi-lin, XUE Yi-yu, ZHANG You-ling, LIU Wei-hua. Analysis of Error Sensitivity and Allowable Error of Optical Film, and Computer Controll in Production[J]. Journal of Applied Optics, 2004, 25(4): 51-55.
    [10]WANG Yi-zhe. Effect of Error Auto-compensation and Error of the Extremely Narrow-band Interference Filter in DWDM System[J]. Journal of Applied Optics, 2004, 25(1): 46-51.
  • Cited by

    Periodical cited type(3)

    1. 吕悦娟,王宇,张建国,王东,刘昕,白清,靳宝全. 基于广义互相关技术的马赫泽德振动检测系统. 光学技术. 2019(02): 192-197 .
    2. 袁宏伟,何巍,张雯,祝连庆. 基于侧边抛磨传感臂结构的光纤Mach-Zehnder温度传感特性研究. 光学技术. 2019(03): 297-302 .
    3. 李小柳,沈华,李嘉,朱雪妍,姚德超,路晴,朱日宏. 倾斜波面干涉仪中光纤阵列型点源发生器的光程误差标定方法. 光学学报. 2018(05): 118-123 .

    Other cited types(3)

Catalog

    Article views (245) PDF downloads (64) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return