LIU Tianci, LIU Guihua, HU Li, HUANG Huiming. Laser center-line extraction method based on normal guidance[J]. Journal of Applied Optics, 2023, 44(1): 211-218. DOI: 10.5768/JAO202344.0107003
Citation: LIU Tianci, LIU Guihua, HU Li, HUANG Huiming. Laser center-line extraction method based on normal guidance[J]. Journal of Applied Optics, 2023, 44(1): 211-218. DOI: 10.5768/JAO202344.0107003

Laser center-line extraction method based on normal guidance

More Information
  • Received Date: March 29, 2022
  • Revised Date: May 24, 2022
  • Available Online: August 03, 2022
  • In the line structured light three-dimensional measurement system, the high-precision laser stripe center-line extraction is the key to improve the measurement accuracy. Aiming at the existing laser center-line problems such as low extraction accuracy and poor retention of details, a laser center-line extraction algorithm based on normal guidance was proposed. The specific implementation steps of the algorithm were as follows: Firstly, the image was pre-processed, and the laser line was preliminarily extracted by combining edge detection and geometric center method. Then, the principal component analysis (PCA) was used to obtain its normal line, divided the angle eight neighborhood at the laser center point, and searched for the effective point set through the normal angle guidance. Finally, the gray centroid method was used to extract the sub-pixels from the point set. The experimental results show that the root mean square error of the algorithm is improved by 0.233 9 pixel compared with that of the gray centroid method, which can retain the light strip details better than the Steger algorithm and the directional template method, and can extract the light strip center more accurately and achieve the sub-pixel level accuracy.

  • [1]
    WANG S C, HAN Q, WANG H, et al. Extraction method of laser stripe center of rail profile in drivingenvironment[J]. Acta Optica Sinica,2019,39(2):167-176.
    [2]
    HE Leiying, WU Shanshan, WU Chuanyu. Robust laser stripe extraction for three-dimensional reconstruction based on a cross-structured light sensor[J]. Applied Optics,2017,56(4):823-832. doi: 10.1364/AO.56.000823
    [3]
    LUO Wenting, WANG K C P, LI Lin, et al. Surface drainage evaluation for rigid pavements using an inertial measurement unit and 1 mm three-dimensional texture data[J]. Transportation Research Record:Journal of the Transportation Research Board,2014,2457(1):121-128. doi: 10.3141/2457-13
    [4]
    LI Lin, WANG K C P, LI Q. Geometric texture indicators for safety on AC pavements with 1 mm 3D laser texture data[J]. International Journal of Pavement Research and Technology,2016,9(1):49-62. doi: 10.1016/j.ijprt.2016.01.004
    [5]
    刘智, 翟林培, 郝志航. 互补金属氧化物半导体图像传感器亚像元细分精度实验研究[J]. 中国激光,2007,34(1):118-124. doi: 10.3321/j.issn:0258-7025.2007.01.022

    LIU Zhi, ZHAI Linpei, HAO Zhihang. Sub-pixel measurement accuracy experiment of complementary metal oxide semiconductor imager[J]. Chinese Journal of Lasers,2007,34(1):118-124. doi: 10.3321/j.issn:0258-7025.2007.01.022
    [6]
    STEGER C. An unbiased detector of curvilinear structures[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(2):113-125. doi: 10.1109/34.659930
    [7]
    潘硕, 邵新杰, 李晓磊, 等. 基于块匹配的激光条纹亚像素中心提取[J]. 激光与红外,2021,51(6):814-819. doi: 10.3969/j.issn.1001-5078.2021.06.020

    PAN Shuo, SHAO Xinjie, LI Xiaolei, et al. Sub-pixel extraction of laser stripe center based on block-matching[J]. Laser & Infrared,2021,51(6):814-819. doi: 10.3969/j.issn.1001-5078.2021.06.020
    [8]
    王利, 陈念年, 巫玲, 等. 高噪声背景下激光条纹亚像素中心的提取[J]. 应用光学,2016,37(2):321-326. doi: 10.5768/JAO201637.0207004

    WANG Li, CHEN Niannian, WU Ling, et al. Extraction of laser stripe sub-pixel center in high-noise background[J]. Journal of Applied Optics,2016,37(2):321-326. doi: 10.5768/JAO201637.0207004
    [9]
    胡斌, 李德华, 金刚, 等. 基于方向模板的结构光条纹中心检测方法[J]. 计算机工程与应用,2002,38(11):59-60. doi: 10.3321/j.issn:1002-8331.2002.11.021

    HU Bin, LI Dehua, JIN Gang, et al. New method for obtaining the center of structured light stripe by directi on template[J]. Computer Engineering and Applications,2002,38(11):59-60. doi: 10.3321/j.issn:1002-8331.2002.11.021
    [10]
    蔡怀宇, 冯召东, 黄战华. 基于主成分分析的结构光条纹中心提取方法[J]. 中国激光,2015,42(3):278-283.

    CAI Huaiyu, FENG Zhaodong, HUANG Zhanhua. Centerline extraction of structured light stripe based on principal component analysis[J]. Chinese Journal of Lasers,2015,42(3):278-283.
    [11]
    周渊, 孟祥群, 江登表, 等. 复杂干扰情况下的结构光条纹中心提取方法[J]. 中国激光,2020,47(12):172-180.

    ZHOU Yuan, MENG Xiangqun, JIANG Dengbiao, et al. Centerline extraction of structured light stripe under complex interference[J]. Chinese Journal of Lasers,2020,47(12):172-180.
    [12]
    金俊, 李德华, 李和平. 结构光三维获取系统条纹中心线检测[J]. 计算机工程与应用,2006,42(4):42-44. doi: 10.3321/j.issn:1002-8331.2006.04.013

    JIN Jun, LI Dehua, LI Heping. New method for obtaining the center of structured light stripe[J]. Computer Engineering and Applications,2006,42(4):42-44. doi: 10.3321/j.issn:1002-8331.2006.04.013
    [13]
    胡杨, 方素平. 线结构光条纹中心提取方法[J]. 激光与光电子学进展,2021,58(1):196-200.

    HU Yang, FANG Suping. Extraction method of light stripe center of linear structure[J]. Laser & Optoelectronics Progress,2021,58(1):196-200.
    [14]
    OTSU N. A Threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man & Cybernetics,2007,9(1):62-66.
    [15]
    何新英, 王家忠, 孙晨霞, 等. 基于数学形态学和Canny算子的边缘提取方法[J]. 计算机应用,2008,28(2):477-478. doi: 10.3724/SP.J.1087.2008.00477

    HE Xinying, WANG Jiazhong, SUN Chenxia, et al. Edge detection method based on mathematical morphology and canny algorithm[J]. Journal of Computer Applications,2008,28(2):477-478. doi: 10.3724/SP.J.1087.2008.00477
    [16]
    曾建新. 激光双目三维成像关键技术研究[D]. 成都: 电子科技大学, 2021.

    ZENG Jianxin. Research on key technologies of laser binocular 3D imaging[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
    [17]
    杨毅, 闫兵, 董大伟, 等. 基于二次平滑算法的线结构光中心线提取方法[J]. 激光与光电子学进展,2020,57(10):309-315.

    YANG Yi, YAN Bing, DONG Dawei, et al. Method for extracting the centerline of line structured light based on quadratic smoothing algorithm[J]. Laser & Optoelectronics Progress,2020,57(10):309-315.
  • Related Articles

    [1]JIANG Shengguang, CAI Yuan, LI Tiansong, SUN Fengyuan, GUO Wanpeng, LIU Rensen, ZHONG Wolou. Spectral image acquisition system based on angle-tuned narrow-band filter[J]. Journal of Applied Optics.
    [2]CHEN Weiguang, DENG Yong, ZHANG Shulian. Characteristics of cavity tuning of half-external cavity Nd:YAG and Nd:YVO4 microchip solid-state lasers[J]. Journal of Applied Optics, 2023, 44(2): 437-443. DOI: 10.5768/JAO202344.0207002
    [3]HU Tieli, WANG Honghong, LI Siwei, CAO Feng, HU Xinyi, FAN Zhe, YANG Yuxin, GUO Jian, YOU Yue, YANG Ke, LI Hui, YU Yang. Research on temperature control and self-tuning for 30℃~420℃ blackbody[J]. Journal of Applied Optics, 2023, 44(2): 392-397. DOI: 10.5768/JAO202344.0203005
    [4]FENG Yan, TIAN Nan, WANG Jicheng, SANG Tian. Dynamic tuning color filters based on stretchable materials[J]. Journal of Applied Optics, 2019, 40(6): 1174-1180. DOI: 10.5768/JAO201940.0605006
    [5]Bai Bing, Wang Jianzhou, Sun Yanxiao, Chen Yuhua, Bai Yang, Bai Jintao. Watt-level continuous wave orange-red laser with wavelength tunable[J]. Journal of Applied Optics, 2017, 38(2): 309-315. DOI: 10.5768/JAO201738.0207001
    [6]Zhang Xin-ting, An Zhi-yong, Kang Lei. Laser frequency tuning technology based on piezoelectric ceramics[J]. Journal of Applied Optics, 2015, 36(6): 965-970. DOI: 10.5768/JAO201536.0605003
    [7]REN Cheng, YANG Xing-tuan, ZHANG Shu-lian. Cavity tuning characteristics of microchip Nd∶YAG dual-frequency laser[J]. Journal of Applied Optics, 2012, 33(6): 1147-1152.
    [8]XU Hui-zhen, QIU Yi-shen, XU Bin. Wavelength tuning characteristic improvement of external cavity diode lasers[J]. Journal of Applied Optics, 2008, 29(6): 975-977.
    [9]LIU Qi-neng. Theoretical study on photonic crystal tunable filter with multiple channels[J]. Journal of Applied Optics, 2008, 29(4): 639-643.
    [10]TAN Chun-hua, HUANG Xu-guang. Two-dimensional photonic crystal optical switch controlled by polarized light[J]. Journal of Applied Optics, 2008, 29(3): 452-457.
  • Cited by

    Periodical cited type(5)

    1. 许君,鹿楠,李婷,成玲,牛丽,郝天煦,张诚. 基于人体呼吸力学的柔性可穿戴呼吸监测技术研究进展. 纺织学报. 2025(01): 217-226 .
    2. 李红豪,龙建勇,成乐凯,梁桥康. 光纤Bragg光栅力觉传感器在健康医疗领域的应用. 测控技术. 2023(04): 9-21 .
    3. 岳欣琰,杨雅晴,韩潇,洪剑寒,葛烨倩. 基于柔性传感器的智能服装研究进展. 纺织科技进展. 2023(06): 4-8 .
    4. 王磊,柳亦兵,滕伟,黄心伟,刘剑韬. 风电机组叶片无损检测技术研究与进展. 中国电力. 2023(10): 80-95 .
    5. 刘刚坤,李宝福. 基于光纤布拉格光栅的多点压力测量. 计量与测试技术. 2022(08): 57-60+63 .

    Other cited types(8)

Catalog

    Article views (821) PDF downloads (138) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return