Citation: | WU Jie, WANG Hailong, ZHANG Xiong, CHEN Jun, WANG Zhaokun, GONG Huaping, ZHAO Chunliu. Study on preparation process of entangled photon pairs based on periodically polarized crystal MgO:PPLN[J]. Journal of Applied Optics, 2023, 44(1): 182-187. DOI: 10.5768/JAO202344.0105001 |
In the process of preparing entangled photon pairs by spontaneous parametric conversion technology based on second-order nonlinear effects, the periodically polarized crystals doped with 5 mol%MgO:PPLN were studied. By linking the momentum conservation and energy conservation conditions in the process of optical parametric transformation with the dispersion equation of the crystal and the thermal expansion equation of the crystal polarization period with temperature, the period-tuning and temperature-tuning properties of entangled photon pairs were obtained at the five commonly used wavelength points of 355 nm, 405 nm, 532 nm, 780 nm and 1 064 nm. It was found that the crystal polarization period was too small and two pairs of entangled photon pairs were generated during the research process, and the entangled light band range generated by the interaction of each wavelength point with nonlinear crystals under a certain polarization period and temperature was summarized. When other nonlinear periodical polarized crystals were selected for experiments, the polarized periodic term in the QPM momentum conservation condition was changed, and the dispersion equation was changed according to the specific crystal used. This research scheme can be directly extended to the research of using different nonlinear crystals to generate entangled photon pairs in the communication optical band or infrared optical band, and has important research value in the field of preparing quantum light sources.
[1] |
LEE D, KIM I, LEE K J. Investigation of 1064 nm pumped type II SPDC in potassium niobate for generation of high spectral purity photon pairs[J]. Crystals,2021,11(6):599. doi: 10.3390/cryst11060599
|
[2] |
DESCLOUX D, DHERBECOURT J B, MELKONIAN J M, et al. Rapidly tunable optical parametric oscillator based on aperiodic quasi-phase matching.[J]. Optics Express,2016,24(10):11112-11125. doi: 10.1364/OE.24.011112
|
[3] |
GE Licheng, CHEN Yuping, JIANG Haowei, et al. Broadband quasi-phase matching in a MgO: PPLN thin film[J]. Photonics Research,2018,6(10):80-84.
|
[4] |
SHENG Q, DING X, SHI C, et al. Continuous-wave mid-infrared intra-cavity singly resonant PPLN-OPO under 880 nm in-band pumping[J]. Optics Express,2012,20(7):8041-8046. doi: 10.1364/OE.20.008041
|
[5] |
KUMAR S C, WEI J, DEBRAY J, et al. High-power, widely tunable, room-temperature picosecond optical parametric oscillator based on cylindrical 5% MgO: PPLN[J]. Optics Letters,2015,40(16):3897-3900. doi: 10.1364/OL.40.003897
|
[6] |
KEMLIN V, JEGOUSO D, DEBRAY J, et al. Dual-wavelength source from 5% MgO: PPLN cylinders for the characterization of nonlinear infrared crystals[J]. Optics Express,2013,21(23):28886-28891. doi: 10.1364/OE.21.028886
|
[7] |
GUO J, HE G, ZHANG B, et al. Compact efficient 2.1 μm intracavity MgO: PPLN OPO with a VBG output coupler[J]. IEEE Photonics Technology Letters,2014,27(6):573-576.
|
[8] |
JIAO Z, GUO J, HE G, et al. Narrowband intracavity MgO: PPLN optical parametric oscillator near degeneracy with a volume Bragg grating[J]. Optics & Laser Technology,2014,56:230-233.
|
[9] |
XU L, FEEHAN J S, SHEN L, et al. Yb-fiber amplifier pumped idler-resonant PPLN optical parametric oscillator producing 90 femtosecond pulses with high beam quality[J]. Applied Physics B,2014,117(4):987-993. doi: 10.1007/s00340-014-5918-7
|
[10] |
ISYANOVA Y, TIAN W Y, MOULTON P F. High-repetition rate, picosecond-pulse, tunable, mid-IR PPLN OPG source[J]. SPIE,2016,9731:97310W.
|
[11] |
ZHANG Jing, ZHANG Yongchang, DUAN Yanmin, et al. Mid-infrared tunable intracavity singly resonant optical parametric oscillator based on MgO: PPLN[J]. International Journal of Optics,2017,2017:1-5.
|
[12] |
郝丽云, 苏岑, 漆云凤, 等. 基于PPMgO: LN晶体的连续波全光纤激光器倍频特性[J]. 中国 激光,2013,40(6):76-81.
HAO Liyun, SU Cen, QI Yunfeng, et al. Second harmonic gereration characteristics of continuous wave all-fiber laser oscillator in PPMgO∶LN[J]. Chinese Journal of Lasers,2013,40(6):76-81.
|
[13] |
张铁犁. 周期极化晶体准相位匹配光学参量产生的研究[D]. 天津: 天津大学, 2005.
ZHANG Tieli. The research on quasi-phase-matched optical parametric generation based on periodically poled crystal[D]. Tianjing: Tianjin University, 2005.
|
[14] |
WU B, KONG J, SHEN Y. High-efficiency semi-external-cavity-structured periodically poled MgLN-based optical parametric oscillator with output power exceeding 9.2 W at 3.82 μm[J]. Optics Letters,2010,35(8):1118-1120. doi: 10.1364/OL.35.001118
|
[15] |
ZHAO J Q, YAO B Q, TIAN Y, et al. High power, continuous wave, singly resonant OPO based on MgO: PPLN[J]. Laser Physics,2010,20(10):1902-1906. doi: 10.1134/S1054660X10190205
|
[16] |
GROß P, LINDSAY I D, LEE C J, et al. Frequency control of a 1163 nm singly resonant OPO based on MgO: PPLN[J]. Optics Letters,2010,35(6):820-822. doi: 10.1364/OL.35.000820
|
[17] |
MENG L, PADHYE A, PEDERSEN C, et al. SHG (532 nm)-induced spontaneous parametric downconversion noise in 1064 nm-pumped IR upconversion detectors[J]. Optics Letters,2019,44(7):1670-1673. doi: 10.1364/OL.44.001670
|
[18] |
LI Z, ZHU A, ZUO N, et al. Theoretical analysis of cascaded optical parametric oscillations generating tunable terahertz waves[J]. Optical Engineering,2013,52(10):106103. doi: 10.1117/1.OE.52.10.106103
|
[19] |
GAYER O, SACKS Z, GALUN E, et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO 3[J]. Applied Physics B,2009,94:367. doi: 10.1007/s00340-008-3316-8
|
[20] |
BRUNER A, EGER D, ORON M B, et al. Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate[J]. Optics Letters,2003,28(3):194-196. doi: 10.1364/OL.28.000194
|
[1] | JIANG Shengguang, CAI Yuan, LI Tiansong, SUN Fengyuan, GUO Wanpeng, LIU Rensen, ZHONG Wolou. Spectral image acquisition system based on angle-tuned narrow-band filter[J]. Journal of Applied Optics. |
[2] | CHEN Weiguang, DENG Yong, ZHANG Shulian. Characteristics of cavity tuning of half-external cavity Nd:YAG and Nd:YVO4 microchip solid-state lasers[J]. Journal of Applied Optics, 2023, 44(2): 437-443. DOI: 10.5768/JAO202344.0207002 |
[3] | HU Tieli, WANG Honghong, LI Siwei, CAO Feng, HU Xinyi, FAN Zhe, YANG Yuxin, GUO Jian, YOU Yue, YANG Ke, LI Hui, YU Yang. Research on temperature control and self-tuning for 30℃~420℃ blackbody[J]. Journal of Applied Optics, 2023, 44(2): 392-397. DOI: 10.5768/JAO202344.0203005 |
[4] | FENG Yan, TIAN Nan, WANG Jicheng, SANG Tian. Dynamic tuning color filters based on stretchable materials[J]. Journal of Applied Optics, 2019, 40(6): 1174-1180. DOI: 10.5768/JAO201940.0605006 |
[5] | Bai Bing, Wang Jianzhou, Sun Yanxiao, Chen Yuhua, Bai Yang, Bai Jintao. Watt-level continuous wave orange-red laser with wavelength tunable[J]. Journal of Applied Optics, 2017, 38(2): 309-315. DOI: 10.5768/JAO201738.0207001 |
[6] | Zhang Xin-ting, An Zhi-yong, Kang Lei. Laser frequency tuning technology based on piezoelectric ceramics[J]. Journal of Applied Optics, 2015, 36(6): 965-970. DOI: 10.5768/JAO201536.0605003 |
[7] | REN Cheng, YANG Xing-tuan, ZHANG Shu-lian. Cavity tuning characteristics of microchip Nd∶YAG dual-frequency laser[J]. Journal of Applied Optics, 2012, 33(6): 1147-1152. |
[8] | XU Hui-zhen, QIU Yi-shen, XU Bin. Wavelength tuning characteristic improvement of external cavity diode lasers[J]. Journal of Applied Optics, 2008, 29(6): 975-977. |
[9] | LIU Qi-neng. Theoretical study on photonic crystal tunable filter with multiple channels[J]. Journal of Applied Optics, 2008, 29(4): 639-643. |
[10] | TAN Chun-hua, HUANG Xu-guang. Two-dimensional photonic crystal optical switch controlled by polarized light[J]. Journal of Applied Optics, 2008, 29(3): 452-457. |