WANG Liya, DUAN Jin, FU Qiang, HAO Youfei, LIU Peng, FAN Xinyu. Experimental analysis of polarization properties of different material surfaces by multi-angle detection[J]. Journal of Applied Optics, 2023, 44(1): 137-144. DOI: 10.5768/JAO202344.0103004
Citation: WANG Liya, DUAN Jin, FU Qiang, HAO Youfei, LIU Peng, FAN Xinyu. Experimental analysis of polarization properties of different material surfaces by multi-angle detection[J]. Journal of Applied Optics, 2023, 44(1): 137-144. DOI: 10.5768/JAO202344.0103004

Experimental analysis of polarization properties of different material surfaces by multi-angle detection

More Information
  • Received Date: November 01, 2021
  • Revised Date: September 08, 2022
  • Available Online: September 12, 2022
  • Compared with intensity detection, the polarization detection can effectively enhance the accuracy of ground object target (such as camouflaged target) recognition. A polarization properties test system was designed and built to conduct the multi-angle polarization imaging experiments on five targets, namely iron plate, glass plate, green lacquer-coated iron plate, green lacquer-coated glass plate and turf. First, the incident light source was set to completely linearly polarized light by rotating the polarizer. Then, a filter was added in front of the polarized camera lens to obtain the images of five materials in the same central band at various detection zenith angles and detection azimuth angles. Finally, the polarization degree of the obtained polarization image was calculated. The results show that the polarization preserving properties of different materials are different, and the polarization degree of the object is only related to the surface coating of the material, and has nothing to do with the internal composition. In the direction of specular reflection, the target has the largest degree of polarization. This indicates that the polarized light detection can be used as a basis for material classification, which can be applied to remote sensing detection, material evidence search and other aspects, and has certain guiding significance for the production of special camouflage materials for anti-polarization reconnaissance.

  • [1]
    夏寅辉, 骆守俊, 白廷柱, 等. 红外偏振在目标探测识别中的研究进展[J]. 激光与红外,2016,46(8):909-915. doi: 10.3969/j.issn.1001-5078.2016.08.001

    XIA Yinhui, LUO Shoujun, BAI Tingzhu, et al. Research progress of infrared polarization in target detection and recognition[J]. Laser & Infrared,2016,46(8):909-915. doi: 10.3969/j.issn.1001-5078.2016.08.001
    [2]
    WOLFF L B, LUNDBERG A, TANG R. Image understanding from thermal emission polarization[C]//Proceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Santa Barbara: IEEE, 1998 : 625-631.
    [3]
    THILAK V, VOELZ D G, CREUSERE C D. Polarization-based index of refraction and reflection angle estimation for remote sensing applications[J]. Applied Optics,2007,46(30):7527-7536. doi: 10.1364/AO.46.007527
    [4]
    叶松, 邓东锋, 孙晓兵, 等. 偏振光谱的土壤湿度遥感方法实验研究[J]. 光谱学与光谱分析,2016,36(5):1434-1439.

    YE Song, DENG Dongfeng, SUN Xiaobing, et al. Experimental study on soil moisture remote sensing based on polarization spectrum[J]. Spectroscopy and Spectral Analysis,2016,36(5):1434-1439.
    [5]
    苏志强, 颜昌翔, 张军强, 等. 基于偏振特性对石英玻璃和绿漆涂层的反演[J]. 中国光学,2016,9(5):547-553. doi: 10.3788/co.20160905.0547

    SU Zhiqiang, YAN Changxiang, ZHANG Junqiang, et al. Inversion of quartz glass and green paint based on polarization characters[J]. Chinese Optics,2016,9(5):547-553. doi: 10.3788/co.20160905.0547
    [6]
    张朝阳, 程海峰, 陈朝辉, 等. 伪装材料表面偏振散射的几何光学解[J]. 红外与激光工程,2009,38(6):1064-1067. doi: 10.3969/j.issn.1007-2276.2009.06.025

    ZHANG Chaoyang, CHENG Haifeng, CHEN Zhaohui, et al. Geometrical optics solution for surface polarimetric scattering of camouflage materials[J]. Infrared and Laser Engineering,2009,38(6):1064-1067. doi: 10.3969/j.issn.1007-2276.2009.06.025
    [7]
    秦绪志, 牛春晖, 陈世杰, 等. 基于微面元理论的“猫眼”目标回波散射偏振特性研究[J]. 应用光学,2020,41(5):916-923. doi: 10.5768/JAO202041.0501007

    QIN Xuzhi, NIU Chunhui, CHEN Shijie, et al. Analysis of polarization characteristics for cat's eye target echo scattering based on microfacet theory[J]. Journal of Applied Optics,2020,41(5):916-923. doi: 10.5768/JAO202041.0501007
    [8]
    熊志航, 廖然, 曾亚光, 等. 利用偏振成像在复杂现场快速识别金属碎屑(特约)[J]. 红外与激光工程,2020,49(6):18-23.

    XIONG Zhihang, LIAO Ran, ZENG Yaguang, et al. Rapid identification of metal debris in complicated scenes by using polarization imaging (Invited)[J]. Infrared and Laser Engineering,2020,49(6):18-23.
    [9]
    廖延彪. 偏振光学[M]. 北京: 科学出版社, 2003: 51-61.

    LIAO Yanbiao. Polarization optics[M]. Beijing: Science Press, 2003: 51-61.
    [10]
    李英超, 刘嘉楠, 史浩东. 基于偏振特性的海洋溢油油种识别研究[J]. 光子学报,2021,50(7):137-146.

    LI Yingchao, LIU Jia'nan, SHI Haodong. Research on identification of marine oil spill based on polarization characteristics[J]. Acta Photonica Sinica,2021,50(7):137-146.
    [11]
    TORRANCE K E, SPARROW E M. Theory for off-specular reflection from roughened surfaces[J]. Journal of the Optical Society of America,1967,57(9):1105. doi: 10.1364/JOSA.57.001105
    [12]
    NICODEMUS F E, RICHMOND J C, HSIA J J, et al. Geometrical considerations and nomenclature for reflectance[R]. Washington: National Bureau of Standards, 1977.
    [13]
    WANG K, ZHU J P, LIU H. Degree of polarization based on the three-component pBRDF model for metallic materials[J]. Chinese Physics B,2017,26(2):024210. doi: 10.1088/1674-1056/26/2/024210
    [14]
    PRIEST R G, GERNER T A. Polarimetric BRDF in the microfacet model: theory and measurements[R]. Ann Arbor: Defense Technical Information Center, 2000.
    [15]
    NAGIB N N, ABDALLAH A, BAHRAWI M, et al. Novel polarimetric method for determination of the Brewster angle of a dielectric[J]. Results in Optics,2020,1:100006. doi: 10.1016/j.rio.2020.100006
    [16]
    王凯, 刘宏, 张修兴. 空间目标热控涂层材料偏振反射特性研究[J]. 光子学报,2020,49(12):211-221.

    WANG Kai, LIU Hong, ZHANG Xiuxing. Study on polarized reflection characteristics of space object thermal control coatings[J]. Acta Photonica Sinica,2020,49(12):211-221.
    [17]
    LIU H Z, SHI Z L, FENG B. An infrared DoLP computational model considering surrounding irradiance[J]. Infrared Physics & Technology,2020,106:103043.
  • Cited by

    Periodical cited type(6)

    1. LIANG Xiaolin,ZHOU Songqing,LI Xiaowu,ZHOU Ling,CHEN Huihuang. Reflectivity measurement technology of special high reflective mirrors and uncertainty analysis of measurement results. Optoelectronics Letters. 2023(01): 49-54 .
    2. 姚林海,陆培国,杨永安,龙井宇,杨修林,卜英华. 光束指向稳定性高精度检测方法研究. 应用光学. 2022(02): 339-344 . 本站查看
    3. 于东钰,俞兵,吕春莉,董再天,杨科,宫经珠,段园园,陈超,张魁甲,黎高平,郑波. 基于光压原理的大功率激光功率测量. 应用光学. 2022(04): 798-802 . 本站查看
    4. 穆让修,张佳,龙井宇,李刚,卜英华,韩耀锋,寿少峻. 高功率激光器的光谱合束技术研究. 应用光学. 2022(04): 792-797 . 本站查看
    5. 丁宇,姜锋,郑荣山,张洁. 美国高能激光武器发展概况(特邀). 光电技术应用. 2021(06): 1-9 .
    6. 管雯璐,谭逢富,侯再红,秦来安,何枫,张巳龙,吴毅. 探测器阵列靶散射取样衰减单元设计. 红外与激光工程. 2021(12): 286-293 .

    Other cited types(4)

Catalog

    Article views (324) PDF downloads (58) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return