LU Hongqiang, ZHANG Jingyue, LIU Chao, WU Yujing, LIU Yingqi, WANG Ya'nan. Wide-area scanning control technology of embedded photoelectric search aiming and indication system[J]. Journal of Applied Optics, 2023, 44(1): 1-5. DOI: 10.5768/JAO202344.0101001
Citation: LU Hongqiang, ZHANG Jingyue, LIU Chao, WU Yujing, LIU Yingqi, WANG Ya'nan. Wide-area scanning control technology of embedded photoelectric search aiming and indication system[J]. Journal of Applied Optics, 2023, 44(1): 1-5. DOI: 10.5768/JAO202344.0101001

Wide-area scanning control technology of embedded photoelectric search aiming and indication system

More Information
  • Received Date: March 23, 2022
  • Revised Date: September 05, 2022
  • Available Online: November 28, 2022
  • An embedded photoelectric search aiming and indication system suitable for stealth airborne platforms was developed, which has the functions of wide-area reconnaissance, staring surveillance, laser ranging and laser irradiation. The wide-area scanning control technology for the optical image motion compensation of geographical stability combined with fast-steering mirrors was deduced and verified, and the algorithm verification was carried out in the laboratory and outfield based on the prototype. The test results show that under the premise of clear imaging, the proposed system realizes the two-dimensional seamless wide-area scanning search function, which can splicing and display the scanned video images in real time and meets the functional requirements of information warfare for target reconnaissance, surveillance and indication.

  • [1]
    Lockheed Martin. F-35 Lightning II electro-optical targeting system(EOTS)[EB/OL]. (2021-12-22)[2022-09-05]. http://www.lockheedmartin.com/en-us/products/f-35-lightning-ii-eots.html.
    [2]
    陈健, 王伟国, 刘廷霞, 等. 美军新型机载光电瞄准系统工作原理分析[J]. 中国光学,2017,10(6):777-782. doi: 10.3788/co.20171006.0777

    CHEN Jian, WANG Weiguo, LIU Tingxia, et al. The operational principle analysis of new airborne electro-optical targeting system(EOTS) of US army[J]. Chinese Optics,2017,10(6):777-782. doi: 10.3788/co.20171006.0777
    [3]
    王平, 田大鹏, 徐宁, 等. 航空光电侦察平台内藏式扫描系统像旋分析及补偿[J]. 光学学报,2017,37(9):0908001-1-0908001-9. doi: 10.3788/AOS201737.0908001

    WANG Ping, TIAN Dapeng, XU Ning, et al. Analysis and compensation of image rotation in internally mounted scanning system for aerial electric-optical reconnaissance platform[J]. Acta Optica Sinica,2017,37(9):0908001-1-0908001-9. doi: 10.3788/AOS201737.0908001
    [4]
    邢振冲. 灵巧型长焦多波段共口径光学系统的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2018.

    XING Zhenchong. Research on miniature telefocal multiband common aperture optical system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, 2018.
    [5]
    田海英, 刘明. 基于扫描反射镜的航空相机前向像移补偿[J]. 光电工程,2014,41(9):20-24.

    TIAN Haiying, LIU Ming. The forward image motion compensating scheme of aerial camera based on scanning mirror[J]. Opto-Electronic Engineering,2014,41(9):20-24.
    [6]
    匡海鹏, 王德江, 孙崇尚. 航空相机扫描像移片上补偿技术[J]. 激光与红外,2015,45(4):415-421. doi: 10.3969/j.issn.1001-5078.2015.04.015

    KUANG Haipeng, WANG Dejiang, SUN Chongshang. On-chip compensation technology for scanning image motion of integrated reconnaissance and attack aerial camera[J]. Laser & Infrared,2015,45(4):415-421. doi: 10.3969/j.issn.1001-5078.2015.04.015
    [7]
    刘立国. 姿态变化对推扫式相机成像质量影响分析与补偿方法研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2012.

    LIU Liguo. Research on the influence of the attitude change to the areial push-brooming camera imaging quality and compensation method[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, 2012.
    [8]
    陆红强, 张璟玥, 王惠林, 等. 一种适用于二维广域扫描的稳定成像方法: CN105588564A[P]. 2016-05-18.

    LU Hongqiang, ZHANG Jingyue, WANG Huilin, et al. A imaging method for two-dimensional wide-area scanning: CN105588564A[P]. 2016-05-18
    [9]
    洪华杰, 王学武, 翁干飞. 光电侦察装备中的反射镜稳定技术[J]. 应用光学,2011,32(4):591-597. doi: 10.3969/j.issn.1002-2082.2011.04.001

    HONG Huajie, WANG Xuewu, WENG Ganfei. Mirror stabilization in electro-optical reconnaissance system[J]. Journal of Applied Optics,2011,32(4):591-597. doi: 10.3969/j.issn.1002-2082.2011.04.001
    [10]
    王琦, 孙广利, 黎纯宁, 等. 基于半捷联的反射镜视轴稳定技术[J]. 红外与激光工程,2015,44(10):3070-3075. doi: 10.3969/j.issn.1007-2276.2015.10.035

    WANG Qi, SUN Guangli, LI Chunning, et al. Inertial line-of-sight stabilization technique of semi-strapdown control using mirrors[J]. Infrared and Laser Engineering,2015,44(10):3070-3075. doi: 10.3969/j.issn.1007-2276.2015.10.035
    [11]
    王震, 程雪岷. 快速反射镜研究现状及未来发展[J]. 应用光学,2019,40(3):373-379.

    WANG Zhen, CHENG Xuemin. Research progress and development trend of fast steering mirror[J]. Journal of Applied Optics,2019,40(3):373-379.
    [12]
    闫明, 刘栋, 王惠林, 等. 机载光电观瞄系统的光轴指向线性运动补偿方法[J]. 应用光学,2016,37(1):1-5.

    YAN Ming , LIU Dong , WANG Huilin, et al. Linear motion compensation algorithm for airborne electro-optic sighting system[J]. Journal of Applied Optics,2016,37(1):1-5.
    [13]
    张璟玥, 纪明, 王惠林. 机载稳瞄控制系统模型及仿真分析[J]. 应用光学,2006,27(6):491-496. doi: 10.3969/j.issn.1002-2082.2006.06.005

    ZHANG Jingyue, JI Ming, WANG Huilin. Modeling and simulation of airborne stabilized sighting system[J]. Journal of Applied Optics,2006,27(6):491-496. doi: 10.3969/j.issn.1002-2082.2006.06.005
    [14]
    刘栋, 王惠林, 雷亮, 等. 基于机载光电系统的瞄准线广域扫描控制方法: CN111026165A[P] . 2020-04-17.

    LIU Dong, WANG Huilin, LEI Liang, et al, Wide area scanning method of airborne photoelectric system: CN111026165A[P] . 2020-04-17.
    [15]
    孙崇尚. 基于快速反射镜的高精度_宽频带扫描像移补偿技术研究[D]. 长春, 中国科学院长春光学精密机械与物理研究所, 2016.

    SUN Chongshang. Research on the scanning image motion compensation technology based on fast steering mirrors with high precision and wide frequency range[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics Chinese Academy of Sciences, 2016.
  • Related Articles

    [1]HU Chaolong, LIU Lei, QIAN Yunsheng, MO Yongchao, BAI Xiaofeng, SHI Feng. Evaluation factor for photocathode detection in low-level-light night vision system[J]. Journal of Applied Optics, 2023, 44(3): 628-635. DOI: 10.5768/JAO202344.0304001
    [2]WANG Jie, CHEN Manlong, LI Kui, YANG Fan, YAN Lizhi. Thread image evaluation method based on machine vision[J]. Journal of Applied Optics, 2022, 43(5): 904-912. DOI: 10.5768/JAO202243.0502004
    [3]Wang Li, Liu Yong-cheng, Wang Zhi-bin. Design of fuzzy controller for high-powerLED cooling system[J]. Journal of Applied Optics, 2015, 36(4): 612-617. DOI: 10.5768/JAO201536.0405003
    [4]Xie Shi-bin, Yang Yong-ying, Liu Dong, Li Yang, Li Chen, Zhao Li-min. Digital evaluation algorithm of American standard in defectsinspection of precise surface[J]. Journal of Applied Optics, 2015, 36(2): 266-271. DOI: 10.5768/JAO201536.0204005
    [5]TU Li-fen, ZHONG Si-dong, PENG Qi. Moving object detection by fuzzy set theory[J]. Journal of Applied Optics, 2013, 34(5): 820-824.
    [6]WU De-gang, ZHAO Li-ping. Application of fuzzy genetic algorithm in road detection[J]. Journal of Applied Optics, 2012, 33(6): 1077-1081.
    [7]ZHANG Ya-tao, JI Shu-peng, WANG Qiang-feng, GUO Zheng-yu. Definition evaluation algorithm based on regional contrast[J]. Journal of Applied Optics, 2012, 33(2): 293-299.
    [8]HAN Feng, ZHU Lei, ZHI Xiao-jun. Measurement of multi-sensor data fusion method based on fuzzy theory[J]. Journal of Applied Optics, 2009, 30(6): 988-991.
    [9]HONG Hua-jie, YUN Ping-ping, ZHAO Chuang-she. Control method of adaptive fuzzy and PI forphotoelectric stabilization based on real-time OS[J]. Journal of Applied Optics, 2009, 30(5): 761-767.
    [10]BAI Hong, ZHANG Le. Application of fuzzy-PID control in ATP servo system[J]. Journal of Applied Optics, 2009, 30(1): 29-33.

Catalog

    Article views (874) PDF downloads (184) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return