Citation: | LIU Xinyan, QIAN Yunsheng, WEI Jingwen. Automatic test system for progressive gain of dynode photomultiplier tube[J]. Journal of Applied Optics, 2022, 43(6): 1117-1123. DOI: 10.5768/JAO202243.0604010 |
Progressive gain is one of the important parameters for evaluating the performance of dynode photomultiplier tube (PMT), but there is only one related test system at home, which relies on manual operation and the test efficiency is not high. In order to improve the efficiency of testing progressive gain, an automatic test system for the progressive gain of dynode PMT was designed. The continuous adjustment of the light source output intensity was achieved by an automatic light system composed of controllable disphragm, electric baffle and etc, and the on-off of the progressive voltage was controlled by the high-voltage module, the voltage divider module and the relay module. Finally, based on the galvanometer module with an accuracy of 0.01 nA, the acquisition, processing and transmission of the signal was completed, so as to realize the automatic measurement of the progressive gain. The experimental results show that the proposed system can effectively measure the progressive gain characteristics of the dynode PMT, and the test repeatability is within 2%, which meets the test requirements.
[1] |
张珮. 基于光电倍增管的数据采集系统设计[D]. 长春: 长春理工大学, 2017.
ZHANG Pei. Design of data acquisition system based on photomultiplier tube[D]. Changchun: Changchun University of Science and Technology, 2017.
|
[2] |
赵艳, 潘超, 赵一鸣, 等. 光电倍增管寿命试验研究与系统设计[J]. 遥测遥控,2021,42(6):107-112.
ZHAO Yan, PAN Chao, ZHAO Yiming, et al. Research on life test and system design for PMT photomultiplier tube[J]. Journal of Telemetry, Tracking and Command,2021,42(6):107-112.
|
[3] |
杨云开. 用于生物毒性的光电倍增管检测技术[J]. 数码世界,2019(7):47.
YANG Yunkai. Photomultiplier tube detection technology for biotoxicity[J]. Digital World,2019(7):47.
|
[4] |
T. Sekine, G. Delso, K. G. Zeimpekis, 等. 应用硅光电倍增检测器可以降低临床PET/MRI上使用18F-FDG的剂量[J]. 国际医学放射学杂志,2018,41(2):220.
T. SEKINE, et al. Reduction of 18F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors[J]. International Journal of Medical Radiology,2018,41(2):220.
|
[5] |
赵富宽, 张波. PET/MRI研制及应用进展[J]. 中国医疗设备,2014,29(8):66-69. doi: 10.3969/j.issn.1674-1633.2014.08.020
ZHAO Fukuan, ZHANG Bo. Development and application progress of PET/MRI[J]. China Medical Devices,2014,29(8):66-69. doi: 10.3969/j.issn.1674-1633.2014.08.020
|
[6] |
黄臻成, 沈韩, 唐健. 中微子探测中的光学应用[J]. 物理与工程,2022,32(1):33-36.
HUANG Zhencheng, SHEN Han, TANG Jian. Application of optics in neutrino detections[J]. Physics and Engineering,2022,32(1):33-36.
|
[7] |
刘茂元, 陈鑫, 念聪. 光电倍增管在地基粒子天体物理实验中的应用[J]. 知识文库,2019(7):37.
LIU Maoyuan, CHEN Xin, NIAN Cong. Application of photomultiplier tubes in ground-based particle astrophysics experiments[J]. Knowledge Base,2019(7):37.
|
[8] |
王浩东. 真空紫外光电倍增管现状及发展趋势分析[J]. 真空电子技术,2022(2):23-28.
WANG Haodong. Status and development trend of UV-photomultiplier tubes[J]. Vacuum Electronics,2022(2):23-28.
|
[9] |
孙建宁, 任玲, 丛晓庆, 等. 一种大尺寸微通道板型光电倍增管[J]. 红外与激光工程,2017,46(4):18-22.
SUN Jianning, REN Ling, CONG Xiaoqing, et al. Large-area micro-channel plate photomultiplier tube[J]. Infrared and Laser Engineering,2017,46(4):18-22.
|
[10] |
郭乐慧, 陈萍, 李立立, 等. 光电倍增管关键技术研究进展[J]. 真空电子技术,2020(4):1-13. doi: 10.16540/j.cnki.cn11-2485/tn.2020.04.01
GUO Lehui, CHEN Ping, LI Lili, et al. Research progress on key technologies of photomultiplier tubes[J]. Vacuum Electronics,2020(4):1-13. doi: 10.16540/j.cnki.cn11-2485/tn.2020.04.01
|
[11] |
汪贵华. 光电子器件[M]. 2版. 北京: 国防工业出版社, 2014.
WANG Guihua. Optoelectronic devices[M]. 2nd. Beijing: National Defense Industry Press, 2014.
|
[12] |
赵文锦. 光电倍增管的技术发展状态[J]. 光电子技术,2011,31(3):145-148. doi: 10.3969/j.issn.1005-488X.2011.03.001
ZHAO Wenjin. Developments in technology of photomultipliers[J]. Optoelectronic Technology,2011,31(3):145-148. doi: 10.3969/j.issn.1005-488X.2011.03.001
|
[13] |
宋登元, 孙同文. 光电倍增管的特性、结构及选取考虑[J]. 中国仪器仪表,1999(5):33-35.
SONG Dengyuan, SUN Tongwen. Properties, structures and choosing consideration for photomultiplier tubes[J]. China Instrmentation,1999(5):33-35.
|
[14] |
中国国家标准化管理委员会. 光电倍增管总规范: GB/T12564-2008[EB]. 北京: 中国标准出版社, 2008: 16-17.
Standardization Administration of China. General Specification for Photomultiplier Tubes: GB/T12564-2008[EB]. Beijing: China Standard Press, 2008: 16-17.
|
[15] |
隋成华, 杜春年, 徐丹阳. 基于卤钨灯和LED的复合光源设计与实现[J]. 浙江工业大学学报,2017,45(3):351-354. doi: 10.3969/j.issn.1006-4303.2017.03.023
SUI Chenghua, DU Chunnian, XU Danyang. Design and implementation of compound light source based on halogen lamp and LEDs[J]. Journal of Zhejiang University of Technology,2017,45(3):351-354. doi: 10.3969/j.issn.1006-4303.2017.03.023
|
[16] |
张文超, 王宇松, 卢可义. 光电倍增管(PMT)的有源偏置电路[J]. 生命科学仪器,2005,3(1):35-37. doi: 10.3969/j.issn.1671-7929.2005.01.010
ZHANG Wenchao, WANG Yusong, LU Keyi. Active voltage biasing circuit for PhotoMultiplier tube(PMT)[J]. Life Science Instruments,2005,3(1):35-37. doi: 10.3969/j.issn.1671-7929.2005.01.010
|
[17] |
胡孟春, 叶文英, 周殿忠, 等. 两种光电倍增管增益与总工作电压的关系研究[J]. 核电子学与探测技术,2004,24(3):239-241. doi: 10.3969/j.issn.0258-0934.2004.03.006
HU Mengchun, YE Wenying, ZHOU Dianzhong, et al. Study of the relationship photomultiplier tube gain with sum work voltage[J]. Nuclear Electronics & Detection Technology,2004,24(3):239-241. doi: 10.3969/j.issn.0258-0934.2004.03.006
|
[1] | WANG Xueqi, HE Zehao, ZHU Qiaofen, CAO Liangcai. Image quality evaluation method and system for head-mounted three-dimensional display[J]. Journal of Applied Optics, 2024, 45(3): 598-607. DOI: 10.5768/JAO202445.0301002 |
[2] | DONG Yunfen, WANG Bo, ZHANG Yingying, GONG Meng, WANG Bin. Optical design and detection for reflective Schmidt system with large field of view[J]. Journal of Applied Optics, 2020, 41(2): 265-269. DOI: 10.5768/JAO202041.0201005 |
[3] | LIU Haiying, WANG Yue, WANG Ying, ZHU Haibin, SUN Hongyu, JIANG Yanming, ZHAO Hanqing. Design of optical system for large-field of view aerocamera[J]. Journal of Applied Optics, 2019, 40(6): 980-986. DOI: 10.5768/JAO201940.0601008 |
[4] | Wu Shenghan, Wang Zheng, Cao Liangcai, Zhang Hao, Jin Guofan. Volume holographic display technology based on angular multiplexing[J]. Journal of Applied Optics, 2017, 38(2): 215-220. DOI: 10.5768/JAO201738.0202002 |
[5] | Zhou Peng-cheng, Bi Yong, Sun Min-yuan, Qi Yan, Zhang Ren-li. Multi-plane holographic display and its noise elimination[J]. Journal of Applied Optics, 2014, 35(6): 996-1002. |
[6] | LI Yan, ZHANG Bao, HONG Yong-feng, ZHAO Chun-lei. Athermalization of dual field of view infrared system[J]. Journal of Applied Optics, 2013, 34(3): 385-390. |
[7] | KANG Yu-si, TIAN Zhi-hui, LIU Wei-qi, FENG Rui, WANG Yu-long. Ultra-thin front projector for laser display system[J]. Journal of Applied Optics, 2012, 33(5): 832-836. |
[8] | CHEN Chi, LIU Wen-de, XU Ying-ying, FAN Qi-ming, ZHANG Jing. Standard white field instrument for measuring viewing angle[J]. Journal of Applied Optics, 2011, 32(6): 1180-1183. |
[9] | YANG Zhen, GUO Zhong-da, Yang Zhi-qiang. Design of retinal projection display system[J]. Journal of Applied Optics, 2011, 32(2): 222-225. |
[10] | ZHANG Ming-jie, WANG Wei-sheng, QIU Song, XU Jia. Realtime color gamut calibration of wide color gamut projection display system based on LED[J]. Journal of Applied Optics, 2009, 30(1): 38-43. |