Citation: | DENG Qin. High-precision detection technology of NO concentration based on UV differential-adaptive interference cancellation[J]. Journal of Applied Optics, 2022, 43(6): 1054-1060. doi: 10.5768/JAO202243.0604003 |
[1] |
中华人民共和国公安部交通管理局. 全国机动车保有量及驾驶人数据统计(截止2021)[EB/OL]. http://www.gov.cn/xinwen/2022-01/11/content_5667669.htm, 2022.
Ministry of Public Security, PRC Traffic Management Bureau. National motor vehicle ownership and driver data statistics[EB/OL]. http://www.gov.cn/xinwen/2022-01/11/content_5667669.htm, 2022.
|
[2] |
中华人民共和国生态环境部&国家统计局及农村农业部. 第二次全国污染源普查公报[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/W020200610353985963290.pdf, 2020.
Ministry of Ecology and Environment, PRC & National Bureau of Statistics & Ministry of Rural Agriculture. Bulletin of the second national census of pollution sources[EB/OL]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/W020200610353985963290.pdf, 2020.
|
[3] |
ZHOU Yong, GAO Chao, GUO Yongcai. UV assisted ultrasensitive trace NO2 gas sensing based on few-layer MoS2 nanosheet–ZnO nanowire heterojunctions at room temperature[J]. Journal of Materials Chemistry A,2018,6(22):10286-10296. doi: 10.1039/C8TA02679C
|
[4] |
ZHOU Yong, LIU Guoqing, ZHU Xiangyi, et al. Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature[J]. Sensors and Actuators B:Chemical,2017,251:280-290. doi: 10.1016/j.snb.2017.05.060
|
[5] |
AFOLARANMI S O, RAMIS F B, MARTINEZ L J L. Technology review: prototyping platforms for monitoring ambient conditions[J]. International Journal of Environmental Health Research,2018,28(3):253-279. doi: 10.1080/09603123.2018.1468423
|
[6] |
STOCKWELL C E, KUPC A, WITKOWSKI B, et al. Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument[J]. Atmospheric Measurement Techniques,2018,11(5):2749-2768. doi: 10.5194/amt-11-2749-2018
|
[7] |
MIRONENKO V R, KURITSYN Y A, LIGER V V, et al. Data processing algorithm for diagnostics of combustion using diode laser absorption spectrometry[J]. Applied Spectroscopy,2018,72(2):199-208. doi: 10.1177/0003702817732252
|
[8] |
QU Z, WERHAHN O, EBERT V. Thermal boundary layer effects on line-of-sight tunable diode laser absorption spectroscopy (TDLAS) gas concentration measurements[J]. Applied Spectroscopy,2018,72(6):853-862. doi: 10.1177/0003702817752112
|
[9] |
曲奉东. 基于纳米尺度金属氧化物异质结构的气体传感器的研究[D]. 吉林: 吉林大学, 2020.
QU Fengdong. Research on gas sensors based on nanoscale metal oxide heterostructures[D]. Jilin: Jilin University, 2020.
|
[10] |
DINH T, KIM D, AHN J, et al. A potential approach to compensate the gas Interference for the analysis of NO by a non-dispersive infrared technique[J]. Analytical Chemistry,2020,92(18):12152-12159. doi: 10.1021/acs.analchem.0c00471
|
[11] |
SUN W Y, ZENG Y, LIU Q W. Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption[J]. Chinese Physics B,2012,21(9):168-175.
|
[12] |
WANG Hairong, ZHANG Wei, YOU Liudong, et al. Back propagation neural network model for temperature and humidity compensation of a non dispersive infrared methane sensor[J]. Instrumentation science & technology,2013,41(6):608-618.
|
[13] |
GUO Yuchen, QIU Xuanbing, LI Ning, et al. A portable laser-based sensor for detecting H2S in domestic natural gas[J]. Infrared Physics & Technology,2020,105:103153.
|
[14] |
HEDLEY K J, SHEPSON P B, BARRFFI L, et al. An evaluation of integrating techniques for measuring atmospheric nitrogen dioxide[J]. International Journal of Environmental Analytical Chemistry,1994,54(3):167-181. doi: 10.1080/03067319408034087
|
[15] |
LI Jingsong, YU Benli, FISCHER H. Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing[J]. Applied Spectroscopy,2015,69(4):496-506. doi: 10.1366/14-07629
|
[16] |
MAURELLIS A N, LANG R, VAN D Z. A new DOAS parameterization for retrieval of trace gases with highly‐structured absorption spectra[J]. Geophysical Research Letters,2000,27(24):4069-4072. doi: 10.1029/2000GL011825
|
[17] |
WANG H S, ZHANG Y G, WU S H, et al. Using broadband absorption spectroscopy to measure concentration of sulfur dioxide[J]. Applied Physics B,2010,100(3):637-641. doi: 10.1007/s00340-010-4151-2
|
[18] |
XU Feng, ZHANG Yungang, SOMESFALEAN G, et al. Broadband spectroscopic sensor for real-time monitoring of industrial SO2 emissions[J]. Applied Optics,2007,46(13):2503-2506. doi: 10.1364/AO.46.002503
|
[19] |
ZHAO Yu, WANG Xianpei, DAI Dangdang, et al. Partial discharge early-warning through ultraviolet spectroscopic detection of SO2[J]. Measurement Science and Technology,2014,25(3):035002. doi: 10.1088/0957-0233/25/3/035002
|
[20] |
吕传明. 基于 DOAS 烟气在线监测系统的应用研究[D]. 天津: 天津大学, 2013.
LYU Chuanming. Research on the application of continuous emission monitoring systems based on DOAS [D]. Tianjin: Tianjin University, 2013.
|
[21] |
王艳萍, 郭永彩, 凡凤莲, 等. 低浓度 NO 和 SO2 混合气体的测量方法研究[J]. 中国测试,2018,44(11):56-60. doi: 10.11857/j.issn.1674-5124.2018.11.010
WANG Yanping, GUO Yongcai, FAN Fenglian, et al. Research on measure method of low concentration NO and SO2 gas mixtures[J]. China Measurement & Test,2018,44(11):56-60. doi: 10.11857/j.issn.1674-5124.2018.11.010
|
[22] |
PENG Bo, ZHOU Yong, LIU Guoqing, et al. An ultra-sensitive detection system for sulfur dioxide and nitric oxide based on improved differential optical absorption spectroscopy method[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,233:118169. doi: 10.1016/j.saa.2020.118169
|
[23] |
周斌, 刘文清, 齐峰, 等. 差分吸收光谱法测量大气污染的浓度反演方法研究[J]. 物理学报,2001(9):1818-1823. doi: 10.3321/j.issn:1000-3290.2001.09.036
ZHOU Bin, LIU Wenqing, QI Feng, et al. Research on concentration inversion method for air pollution measurement by differential absorption spectrometry[J]. Acta Physica Sinica,2001(9):1818-1823. doi: 10.3321/j.issn:1000-3290.2001.09.036
|
[24] |
刘新元, 谢柏青, 戴远东, 等. 射频SQUID心磁图数据自适应滤波研究[J]. 物理学报,2005(4):1937-1942. doi: 10.3321/j.issn:1000-3290.2005.04.085
LIU Xinyuan, XIE Baiqing, DAI Yuandong, et al. Research on adaptive filtering of RF SQUID magnetocardiogram data[J]. Acta Physica Sinica,2005(4):1937-1942. doi: 10.3321/j.issn:1000-3290.2005.04.085
|
[25] |
孟晋丽, 傅有光, 陈翼, 等. 基于自适应滤波的雷达目标-干扰分离技术[J]. 现代雷达,2015,37(4):39-42. doi: 10.3969/j.issn.1004-7859.2015.04.009
MENG Jinli, FU Youguang, CHEN Yi, et al. Radar target-interference separation technology based on adaptive filtering[J]. Modern Radar,2015,37(4):39-42. doi: 10.3969/j.issn.1004-7859.2015.04.009
|
[26] |
高鹰, 谢胜利. 一种变步长LMS自适应滤波算法及分析[J]. 电子学报,2001(8):1094-1097. doi: 10.3321/j.issn:0372-2112.2001.08.023
GAO Ying, XIE Shengli. A variable step size LMS adaptive filtering algorithm and analysis[J]. Acta Electronica Sinica,2001(8):1094-1097. doi: 10.3321/j.issn:0372-2112.2001.08.023
|
[27] |
靳翼, 邵怀宗. 一种新的变步长LMS自适应滤波算法及其仿真[J]. 信号处理,2010,26(9):1385-1388. doi: 10.3969/j.issn.1003-0530.2010.09.018
JIN Yi, SHAO Huaizong. A new variable-step LMS adaptive filtering algorithm and its simulation[J]. Journal of Signal Processing,2010,26(9):1385-1388. doi: 10.3969/j.issn.1003-0530.2010.09.018
|
[28] |
程学珍, 徐景东, 卫阿盈, 等. RLS自适应滤波在信号消噪中的应用[J]. 测试科学与仪器,2014,5(1):32-36.
CHENG Xuezhen, XU Jingdong, WEI Aying, et al. Application of RLS adaptive filtering in signal denoising[J]. Journal of Measurement Science and Instrumentation,2014,5(1):32-36.
|
[29] |
马国栋, 阎树田, 贺成柱, 等. 基于LMS算法与RLS算法自适应滤波及仿真分析[J]. 电子设计工程,2014,22(6):43-45. doi: 10.3969/j.issn.1674-6236.2014.06.014
MA Guodong, YAN Shutian, HE Chengzhu, et al. Adaptive filtering and simulation analysis based on LMS algorithm and RLS algorithm[J]. Electronic Design Engineering,2014,22(6):43-45. doi: 10.3969/j.issn.1674-6236.2014.06.014
|