ZHANG Yan, ZHANG Fan, ZHAO Guanqi, CHU Daping. Circumferential stress measurement of blood vessels model in vitro based on fiber Bragg grating sensor[J]. Journal of Applied Optics, 2022, 43(5): 1007-1014. DOI: 10.5768/JAO202243.0508003
Citation: ZHANG Yan, ZHANG Fan, ZHAO Guanqi, CHU Daping. Circumferential stress measurement of blood vessels model in vitro based on fiber Bragg grating sensor[J]. Journal of Applied Optics, 2022, 43(5): 1007-1014. DOI: 10.5768/JAO202243.0508003

Circumferential stress measurement of blood vessels model in vitro based on fiber Bragg grating sensor

More Information
  • Received Date: January 17, 2022
  • Revised Date: February 22, 2022
  • Available Online: April 29, 2022
  • The circumferential stress caused by blood flow in blood vessels is closely related to the structural and functional changes of blood vessels. Measuring the circumferential stress of blood vessel models in vitro is an important issue in biomechanics research. A method for measuring the circumferential stress of blood vessels by using fiber gratings was proposed, and a three-dimensional circular blood vessel model integrating fiber gratings was established by using steel needle mold based on microfluidic technology. The relationship between different flow velocities and stress was studied through simulation. The simulation results show that the stress changes linearly with the flow velocity in the range of 8 mm/s~75 mm/s. The circumferential stress generated by fluid flow was measured by fiber Bragg grating sensor. According to the experiment, the relationship between wavelength change of grating and velocity was obtained. When the flow velocity range varies from 8 mm/s to 75 mm/s, the wavelength change caused by velocity is 0.173 nm. The relationship between stress and wavelength change of grating was obtained by simulation experiment. A microfluidic blood vessel model with fiber Bragg grating sensor was proposed and implemented, which provides a new idea for measuring circumferential stress in vitro when blood flows.

  • [1]
    SU Haoran, LI Kexin, LIU Xiao, et al. Microfluidic chips for the endothelial biomechanics and mechanobiology of the vascular system[J]. Biocell,2021,45(4):797-811. doi: 10.32604/biocell.2021.014900
    [2]
    AMAYA R, PIERIDES A, TARBELL J M. The interaction between fluid wall shear stress and solid circumferential strain affects endothelial gene expression[J]. PLoS One,2015,10(7):e0129952. doi: 10.1371/journal.pone.0129952
    [3]
    丁皓, 刘雨佳, 张迎, 等. 壁冠状动脉周向应力体外加载装置的研制[J]. 医用生物力学,2020,35(3):311-318.

    DING Hao, LIU Yujia, ZHANG Ying, et al. Development of an in vitro loading device for circumferential stress of mural coronary arteries[J]. Journal of Medical Biomechanics,2020,35(3):311-318.
    [4]
    霍云龙. 冠脉循环和心肌力学性能[J]. 医用生物力学,2019,34(增刊1):40-41.

    HUO Yunlong. Coronary circulation and myocardial mechanical properties[J]. Journal of Medical Biomechanics,2019,34(S1):40-41.
    [5]
    章晓升, 覃开蓉, 沈宝荣, 等. 自发性高血压大鼠颈总动脉的平均壁面切应力和周向应力[J]. 医用生物力学,2006,21(4):262-266.

    ZHANG Xiaosheng, QIN Kairong, SHEN Baorong, et al. Mean wall shear stress and circumferential stress in common carotid artery in spontaneously hypertensive rats[J]. Journal of Medical Biomechanics,2006,21(4):262-266.
    [6]
    丁皓, 赵灵犀, 尚昆, 等. 基于“心肌桥-冠状动脉”模拟装置的周向应力研究[J]. 中国生物医学工程学报,2011,30(2):276-280. doi: 10.3969/j.issn.0258-8021.2011.02.017

    DING Hao, ZHAO Lingxi, SHANG Kun, et al. A study on circumferential stress with “myocardial bridge-coronary artery” simulative device[J]. Chinese Journal of Biomedical Engineering,2011,30(2):276-280. doi: 10.3969/j.issn.0258-8021.2011.02.017
    [7]
    孙旭. 动脉粥样硬化斑块血管的血流动力学模拟及实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    SUN Xu. Hemodynamic simulation and experimental study of atherosclerotic plaque blood vessels[D]. Harbin: Harbin Institute of Technology, 2019.
    [8]
    SAMAEE M, TAFAZZOLI-SHADPOUR M, ALAVI H. Coupling of shear-circumferential stress pulses investigation through stress phase angle in FSI models of stenotic artery using experimental data[J]. Medical & Biological Engineering & Computing,2017,55(8):1147-1162.
    [9]
    GHOLIPOUR A, GHAYESH M H, ZANDER A, et al. Three-dimensional biomechanics of coronary arteries[J]. International Journal of Engineering Science,2018,130:93-114. doi: 10.1016/j.ijengsci.2018.03.002
    [10]
    方肇伦. 微流控分析芯片的制作及应用[M]. 北京: 化学工业出版社, 2005.

    FANG Zhaolun. Fabrication and application of microfluidic analysis chip [M]. Beijing: Chemical Industry Press, 2005.
    [11]
    范一强, 柴东平, 黄磊, 等. 微流控芯片的标准化探索与展望[J]. 标准科学,2019(7):46-52. doi: 10.3969/j.issn.1674-5698.2019.07.009

    FAN Yiqiang, CHAI Dongping, HUANG Lei, et al. Standardization of microfluidics: review and outlook[J]. Standard Science,2019(7):46-52. doi: 10.3969/j.issn.1674-5698.2019.07.009
    [12]
    ZHAO Yong, HU Xuguang, HU Sheng, et al. Applications of fiber-optic biochemical sensor in microfluidic chips: a review[J]. Biosensors and Bioelectronics,2020,166:112447. doi: 10.1016/j.bios.2020.112447
    [13]
    MASSARONI C, ZALTIERI M, LO PRESTI D, et al. Fiber Bragg grating sensors for cardiorespiratory monitoring: a review[J]. IEEE Sensors Journal,2021,21(13):14069-14080. doi: 10.1109/JSEN.2020.2988692
    [14]
    贾丹平, 曹璨, 马赫驰. 基于光纤Bragg光栅的力传感技术研究[J]. 传感器技术与应用,2019,7(3):95-103. doi: 10.12677/JSTA.2019.73011

    JIA Danping, CAO Can, MA Hechi. Research on force sensing technology based on Fiber Bragg grating[J]. Sensor technology and application,2019,7(3):95-103. doi: 10.12677/JSTA.2019.73011
    [15]
    吴祖堂, 陈志军, 邹虹, 等. 采用光纤光栅传感器测量模型材料应变的原理和应用[J]. 机械设计与研究,2012,28(1):82-84. doi: 10.3969/j.issn.1006-2343.2012.01.023

    WU Zutang, CHEN Zhijun, ZOU Hong, et al. Study on application and principle of strain measurement based on fiber Bragg grating sensor in material model experiment[J]. Machine Design & Research,2012,28(1):82-84. doi: 10.3969/j.issn.1006-2343.2012.01.023
    [16]
    尤晓萍, 王巧兰. 阵列式数字光刻3D打印技术的设计与实现[J]. 数码世界,2018(11):5-6.

    YOU Xiaoping, WANG Qiaolan. Design and implementation of array digital lithography 3D printing technology[J]. Digital Space,2018(11):5-6.
    [17]
    孙石山. 精密机械加工技术及其发展动向[J]. 造纸装备及材料,2021,50(2):91-93. doi: 10.3969/j.issn.1672-3066.2021.02.038

    SUN Shishan. Precision machining technology and its development trend[J]. Papermaking Equipment & Materials,2021,50(2):91-93. doi: 10.3969/j.issn.1672-3066.2021.02.038
    [18]
    QI Li, ZHU Jiang, HANCOCK A M, et al. Volumetric vessel reconstruction method for absolute blood flow velocity measurement in Doppler OCT images[J]. SPIE, 2017, 10053: 267-270.
  • Related Articles

    [1]DU Rui, YANG Jun, LIAO Binbin, LU Qiang, ZHENG Hang, DING Yang, SHI Guokai, LI Jin, XU Haibin, ZHANG Suoqi, ZHANG Dezhi. Measurement technology of stress wave particle velocity in solid medium based on optical fiber coated probe[J]. Journal of Applied Optics, 2024, 45(1): 221-228. DOI: 10.5768/JAO202445.0108001
    [2]HUANG Zhanhua, ZHANG Guang, CAO Yusheng, ZHANG Hanxiao, SHEN Muhong. Simulation research on instantaneous position measurement of explosion point of general industrial camera[J]. Journal of Applied Optics, 2021, 42(5): 891-897. DOI: 10.5768/JAO202142.0503003
    [3]HAN Zhansuo, CAO Feng, WANG Jian’gang, LUO Beibei, QIN Yan, LIU Fang. Testing method about infrared radiation intensity of explosive used in vacuum environment[J]. Journal of Applied Optics, 2020, 41(6): 1230-1235. DOI: 10.5768/JAO202041.0603002
    [4]WEI Yonghui, WANG Shiyu, WU Mengyao, CAI Defang, GUO Zhen. Transient measurement on electric explosion of metal wire by nanosecond pulsed laser[J]. Journal of Applied Optics, 2019, 40(6): 1109-1114. DOI: 10.5768/JAO201940.0603005
    [5]ZHANG Jijun, ZHANG Dongliang, LI Liang, ZHANG Baoguo, ZHAO Jianwei, TAO Jun. Application research of FBG sensors used in cavity explosion for pressure measurement[J]. Journal of Applied Optics, 2019, 40(2): 300-305. DOI: 10.5768/JAO201940.0203004
    [6]HAO Ji-ping, LI Xin-ze, DU Cheng-gong, HAO Li-feng. Position deviation measurement between projectile explosion and target for air defense system[J]. Journal of Applied Optics, 2011, 32(6): 1189-1192.
    [7]GAO Feng, ZHU Shi-guo. Relationship between group velocity and phase velocity of the mode-field on multi-mode fiber[J]. Journal of Applied Optics, 2010, 31(4): 611-616.
    [8]WU Jian-hui, YANG Kun-tao, ZHANG Nan-yang-sheng. Atmosphere transmission in detection of nuclear explosion light radiation[J]. Journal of Applied Optics, 2008, 29(5): 815-820.
    [9]CHANG Li-hua, WANG Wei, SHANG Chang-shui, LI Jian, TIAN Jian-hua. High-speed photography for electrical explosive loaded multi-layer target[J]. Journal of Applied Optics, 2008, 29(1): 27-30.
    [10]CAI Rong-li, NI Jin-ping, YANG Min, WANG Tie-ling. Design on double-slit light screens[J]. Journal of Applied Optics, 2007, 28(4): 392-396.
  • Cited by

    Periodical cited type(1)

    1. 郑志军, 詹世革, 戴兰宏. 第二届全国爆炸与冲击动力学青年学者学术研讨会报告综述. 力学学报. 2018(01): 177-187 .

    Other cited types(3)

Catalog

    Article views (497) PDF downloads (45) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return