Citation: | AN Guowen, WANG Lizhi, JIA Pinggang, ZHAI Chengrui, ZHANG Yanjun, SU Jianhui, ZHU Fengtong, LIU Lei. Dual-core photonic crystal fiber temperature sensor based on vernier effect[J]. Journal of Applied Optics, 2022, 43(3): 551-556. DOI: 10.5768/JAO202243.0308002 |
[1] |
ABRAMSKY S, JAGADEESAN R, MALACARIA P. Full abstraction for PCF[J]. Information and Computation,2000,163(2):409-470. doi: 10.1006/inco.2000.2930
|
[2] |
KUROKAWA K, TAJIMA K, TSUJIKAWA K, et al. Penalty-free dispersion-managed soliton transmission over a 100 km low-loss PCF[J]. Journal of Lightwave Technology, 2006, 24(1): 32-37.
|
[3] |
ZHANG Yani. Design and optimization of high-birefringence low-loss crystal fiber with two zero-dispersion wavelengths for nonlinear effects[J]. Applied Optics,2011,50(25):E125. doi: 10.1364/AO.50.00E125
|
[4] |
MARTINS H, MARQUES M B, JORGE P, et al. Intensity curvature sensor based on photonic crystal fiber with three coupled cores[J]. Optics Communications,2012,285(24):5128-5131. doi: 10.1016/j.optcom.2012.07.074
|
[5] |
QIU Shi, YUAN Jinhui, ZHOU Xian, et al. Highly sensitive temperature sensing based on all-solid cladding dual-core photonic crystal fiber filled with the toluene and ethanol[J]. Optics Communications,2020,477:126357. doi: 10.1016/j.optcom.2020.126357
|
[6] |
OU Zhilong, YU Yongqin, YAN Peiguang, et al. Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing[J]. Optics Express,2013,21(20):23812-23821. doi: 10.1364/OE.21.023812
|
[7] |
ZHOU Xue, LI Shuguang, LI Xuegang, et al. A vectorial analysis of the curvature sensor based on a dual-core photonic crystal fiber[J]. IEEE Transactions on Instrumentation and Measurement,2020,69(9):6564-6570. doi: 10.1109/TIM.2020.2968777
|
[8] |
SAITOH K, SATO Y, KOSHIBA M. Coupling characteristics of dual-core photonic crystal fiber couplers[J]. Optics Express,2003,11(24):3188-3195. doi: 10.1364/OE.11.003188
|
[9] |
HOU Maoxiang, WANG Ying, LIU Shuhui, et al. Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing[J]. IEEE Sensors Journal,2016,16(16):6192-6196. doi: 10.1109/JSEN.2016.2581302
|
[10] |
KUMAR PAUL A, KRISHNO SARKAR A, RAHMAN A B S, et al. Twin core photonic crystal fiber plasmonic refractive index sensor[J]. IEEE Sensors Journal,2018,18(14):5761-5769. doi: 10.1109/JSEN.2018.2841035
|
[11] |
ZHANG Shaoxian, YIN Liu, ZHAO Yujia, et al. Bending sensor with parallel fiber Michelson interferometers based on Vernier-like effect[J]. Optics & Laser Technology,2019,120:105679.
|
[12] |
LIU Qiang, XING Liang, YAN Sicheng, et al. Sensing characteristics of photonic crystal fiber Sagnac interferometer based on novel birefringence and Vernier effect[J]. Metrologia,2020,57(3):035002. doi: 10.1088/1681-7575/ab71b2
|
[13] |
NAN Tong, LIU Bo, WU Yongfeng, et al. High-temperature fiber sensor based on two paralleled fiber-optic Fabry-Perot interferometers with ultrahigh sensitivity[J]. Optical Engineering,2020,59:027102.
|
[14] |
HOU Leyi, ZHAO Chunliu, XU Ben, et al. Highly sensitive PDMS-filled Fabry-Perot interferometer temperature sensor based on the Vernier effect[J]. Applied Optics,2019,58(18):4858-4865. doi: 10.1364/AO.58.004858
|
[15] |
ABBAS L G, LI Hao. Temperature sensing by hybrid interferometer based on Vernier like effect[J]. Optical Fiber Technology,2021,64:102538. doi: 10.1016/j.yofte.2021.102538
|
[16] |
SHAO Liyang, LUO Yuan, ZHANG Zhiyong, et al. Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect[J]. Optics Communications,2015,336:73-76. doi: 10.1016/j.optcom.2014.09.075
|
[17] |
DENG Jun, WANG D N. Ultra-sensitive strain sensor based on femtosecond laser inscribed in-fiber reflection mirrors and vernier effect[J]. Journal of Lightwave Technology,2019,37(19):4935-4939. doi: 10.1109/JLT.2019.2926066
|
[18] |
ZHAO Yuanfang, DAI Maolin, CHEN Zhenmin, et al. Ultrasensitive temperature sensor with Vernier-effect improved fiber Michelson interferometer[J]. Optics Express,2021,29(2):1090-1101. doi: 10.1364/OE.415857
|
[19] |
MALITSON I H. Interspecimen comparison of the refractive index of fused silica*[J]. Journal of the Optical Society of America,1965,55(10):1205-1209. doi: 10.1364/JOSA.55.001205
|
[20] |
WU Tiesheng, LIU Yumin, YU Zhongyuan, et al. The sensing characteristics of plasmonic waveguide with a ring resonator[J]. Optics Express,2014,22(7):7669-7677. doi: 10.1364/OE.22.007669
|
[21] |
SANI E, DELL'ORO A. Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared[J]. Optical Materials,2016,60:137-141. doi: 10.1016/j.optmat.2016.06.041
|
[22] |
WANG Z, TARU T, BIRKS T A, et al. Coupling in dual-core photonic bandgap fibers: theory and experiment[J]. Optics Express,2007,15(8):4795-4803. doi: 10.1364/OE.15.004795
|
[23] |
NAGANUMA F, KROEGER D, BANDARU S S, et al. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia[J]. PLoS Biology,2019,17(3):e3000172. doi: 10.1371/journal.pbio.3000172
|
[24] |
KONG G, ANYARAMBHATLA G, PETROS W P, et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release[J]. Cancer Research,2000,60(24):6950-6957.
|
[25] |
GARANINA A S, NAUMENKO V A, NIKITIN A A, et al. Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2020,25:102171. doi: 10.1016/j.nano.2020.102171
|
[1] | XIANG Wanfeng, CHEN Jie, GUO Yuqing, WANG Xiaoyu, WANG Juanfen. Experimental and simulation study of dual-wavelength fiber laser based on intracavity filtering effect[J]. Journal of Applied Optics, 2024, 45(5): 1079-1084. DOI: 10.5768/JAO202445.0508001 |
[2] | ZHAO Ming, WANG Tianshu. Switchable soliton molecules and noise-like pulses in hybrid mode-locking fiber laser[J]. Journal of Applied Optics, 2023, 44(2): 456-461. DOI: 10.5768/JAO202344.0208001 |
[3] | QU Jiahui, ZHANG Haiyang, FAN Yu, WANG Lin, WANG Heying, ZHAO Changming. Mechanism of multi-wavelength laser detection of micro-camera[J]. Journal of Applied Optics, 2022, 43(4): 809-818. DOI: 10.5768/JAO202243.0407004 |
[4] | ZHAO Ming, WANG Tianshu. High SNR multi-wavelength 2 μm actively mode-locked fiber laser[J]. Journal of Applied Optics, 2021, 42(1): 194-199. DOI: 10.5768/JAO202142.0108001 |
[5] | WANG Furen, WANG Tianshu, MA Wanzhuo, JIA Qingsong, ZHAO Desheng, LIU Runmin. Multi-wavelength noise-like pulsed erbium-doped fiber laser[J]. Journal of Applied Optics, 2019, 40(4): 710-716. DOI: 10.5768/JAO201940.0408003 |
[6] | Jia Qingsong, Wang Tianshu, Wang Zhen, Chen Bowen, Bo Baoxue, Jiang Huilin. Temperature sensing characteristics based on multi-wavelength Brillouin fiber laser[J]. Journal of Applied Optics, 2018, 39(4): 585-589. DOI: 10.5768/JAO201839.0408001 |
[7] | Xu Yu-meng, Wang Guo-zheng, Peng Ling-ling, Liu Xin-nan, Kou Yan-qiang, Wu Ke-xin. Dual-wavelength fiber laser for generating interval-adjustable microwave[J]. Journal of Applied Optics, 2014, 35(4): 729-732. |
[8] | LU Xue-feng, BAI Qing-lan. Optimal design for Sagnac interferometer of imaging spectrometer[J]. Journal of Applied Optics, 2012, 33(4): 666-669. |
[9] | GAO Jiao-bo, LI Jian-jun, SUN Zhi-jia, WANG Jun, ZHENG Ya-wei, WANG Ji-long. Simulation of multi-wavelength laser composite point target motion[J]. Journal of Applied Optics, 2011, 32(3): 562-567. |
[10] | ZHONG Yu-guang, ZHANG Zu-xing. AHigh birefringence coherent fiber filter with selectable wavelengths[J]. Journal of Applied Optics, 2011, 32(1): 96-100. |
1. |
刘宵婵,陈琛,单宏,刘红军,高松,宋涛,李维善,张禹. 基于4k分辨率小型投影机的鱼眼镜头设计. 应用光学. 2020(05): 1060-1066 .
![]() |