Citation: | LI Baoyu, ZHANG Feng, PENG Xia, LIU Yenan. K-means+SSA-Elman network visible light indoor location awareness algorithm[J]. Journal of Applied Optics, 2022, 43(3): 453-459. DOI: 10.5768/JAO202243.0302005 |
Due to the complex indoor environment, the visible light location awareness based on Elman neural network has the problems of slow convergence speed and low positioning accuracy. An optimized Elman neural network based on sparrow search algorithm (SSA) was proposed, and a visible light indoor location awareness algorithm was fused with K-means clustering. The database was established for the collected data, the topological structure and connection weight threshold of the Elman were optimized by using SSA, and the training model was designed, so as to solve the problem that the indoor location awareness algorithm based on Elman neural network was easy to fall into the local optimization and improve the convergence speed and robustness. The K-means was used to optimize the classification of database, and the processed data was substituted into the model training to obtain the preliminary prediction results. The preliminary prediction results were substituted into the subclass for secondary training to obtain the final coordinates of predicted position, which further improved the positioning accuracy. The experiment based on three-dimensional space of 0.8 m×0.8 m×0.8 m was carried out, and the results show that the average positioning error of the proposed algorithm is 3.22 cm, and the probability of positioning error less than 6 cm is 90%, which improves the positioning accuracy by 7.5% compared with the SSA-Elman algorithm and by 16% compared with the Elman network algorithm.
[1] |
王慧强, 高凯旋, 吕宏武. 高精度室内定位研究评述及未来演进展望[J]. 通信学报,2021,42(7):198-210.
WANG Huiqiang, GAO Kaixuan, LYU Hongwu. Survey of high-precision localization and the prospect of future evolution[J]. Journal of communications,2021,42(7):198-210.
|
[2] |
CHEN Yunfei, DU Taihang, JIANG Chundong, et al. Indoor location method of interference source based on deep learning of spectrum fingerprint features in Smart Cyber-Physical systems[J]. EURASIP Journal on Wireless Communications and Networking,2019,2019(1):8-12. doi: 10.1186/s13638-018-1337-5
|
[3] |
TORRES J C, MONTES A, MENDOZA S L, et al. A low-cost visible light positioning system for indoor positioning[J]. Sensors,2020,20(18):1. doi: 10.1109/JSEN.2020.3014328
|
[4] |
赵黎, 韩中达, 张峰. 基于神经网络的可见光室内立体定位研究[J]. 中国激光,2021,48(7):145-154.
ZHAO Li, HAN Zhongda, ZHANG Feng. Research on stereo location in visible light room based on neural network[J]. China laser,2021,48(7):145-154.
|
[5] |
徐超蓝, 高军礼, 张小花, 等. 基于K-means和SVM的蓝牙室内定位算法[J]. 传感器与微系统,2019,38(2):133-135.
XU Chaolan, GAO Junli, ZHANG Xiaohua, et al. Algorithm of Bluetooth indoor localization based on K-means and SVM[J]. Sensors and Microsystems,2019,38(2):133-135.
|
[6] |
岳小冰, 郝倩. 改进神经网络的无线网络室内定位[J]. 计算机系统应用,2018,27(2):257-260. doi: 10.3969/j.issn.1003-3254.2018.02.044
YUE Xiaobing, HAO Qian. Indoor positioning of wireless network based on improved neural network[J]. Computer system application,2018,27(2):257-260. doi: 10.3969/j.issn.1003-3254.2018.02.044
|
[7] |
WU Yuhui, LIU Jingbo, ZHANG Jiaan, et al. Short-term forecast of photovoltaic power generation output based on improved PSO-Elman neural network[J]. IOP Conference Series:Earth and Environmental Science,2021,675(1):3-7.
|
[8] |
施龙青, 张荣遨, 徐东晶, 等. 基于GWO-Elman神经网络的底板突水预测[J]. 煤炭学报,2020,45(7):2455-2463.
SHI Longqing, ZHANG Rongao, XU Dongjing, et al. Prediction of water inrush from floor based on GWO-Elman neural network[J]. Journal of coal,2020,45(7):2455-2463.
|
[9] |
宋菁华, 杨春节, 周哲, 等. 改进型EMD-Elman神经网络在铁水硅含量预测中的应用[J]. 化工学报,2016,67(3):729-735.
SONG Jinghua, YANG Chunjie, ZHOU Zhe, et al. Application of improved EMD-Elman neural network to predict silicon content in hot metal[J]. Journal of chemical engineering,2016,67(3):729-735.
|
[10] |
张驰, 张峰, 刘叶楠. 基于融合聚类的蓝牙指纹室内定位算法优化[J]. 计算机仿真,2020,37(7):314-318. doi: 10.3969/j.issn.1006-9348.2020.07.062
ZHANG Chi, ZHANG Feng, LIU Yenan, et al. Optimization of bluetooth fingerprint indoor positioning algorithm based on fusion clustering[J]. Computer simulation,2020,37(7):314-318. doi: 10.3969/j.issn.1006-9348.2020.07.062
|
[11] |
毛永毅, 阴颖. 面向室内定位的DHOHF-Elman神经网络算法[J]. 信号处理,2019,35(8):1358-1365.
MAO Yongyi, YIN Ying. DHOHF-elman neural network algorithm for indoor localization[J]. Signal processing,2019,35(8):1358-1365.
|
[12] |
邓天民, 方芳, 岳云霞, 等. 基于Elman神经网络的GNSS/INS全域高精度定位方法[J]. 计算机应用,2019,39(4):994-1000. doi: 10.11772/j.issn.1001-9081.2018091920
DENG Tianmin, FANG Fang, YUE Yunxia, et al. GNSS / INS global high-precision positioning method based on Elman neural network[J]. Computer applications,2019,39(4):994-1000. doi: 10.11772/j.issn.1001-9081.2018091920
|
[13] |
薛建凯. 一种新型的群智能优化技术的研究与应用[D]. 上海: 东华大学, 2020.
XUE Jiankai. Research and application of a new swarm intelligence optimization technology[D]. Shanghai: Donghua University, 2020.
|
[14] |
刘倩颖, 阮应君, 时翔, 等. 基于kmeans聚类与BP神经网络算法的办公建筑逐时电负荷预测[J]. 热能动力工程,2018,33(3):138-144.
LIU Qianying, RUAN Yingjun, SHI Xiang, et al. Hourly power load forecasting of office building based on Kmeans clustering and BP neural network algorithm[J]. Thermal power engineering,2018,33(3):138-144.
|
[1] | LU Xiaoyan, SHEN Meng, WANG Jie, LI Jiaheng, YANG Yizhou, HE Xi, CAO Yuju, PANG Lan. Long-time tracking technology for ground targets based on deep learning[J]. Journal of Applied Optics, 2025, 46(2): 343-354. DOI: 10.5768/JAO202546.0202007 |
[2] | LI Yingjuan, XU Kailuan, LIU Peizhen, SONG Jinhong, CAO Yuju, ZHANG Xuhui. Tracking of infrared sea-skimming small target with sea-sky line[J]. Journal of Applied Optics, 2024, 45(1): 70-78. DOI: 10.5768/JAO202445.0102001 |
[3] | CAI Wei, XU Peiwei, YANG Zhiyong, JIANG Xinhao, JIANG Bo. Dim-small targets detection of infrared images in complex backgrounds[J]. Journal of Applied Optics, 2021, 42(4): 643-650. DOI: 10.5768/JAO202142.0402002 |
[4] | FAN Pengcheng, ZHANG Weiguo, LIU Wangang, ZHANG Wei, HUANG Weidong, LIU Guodong, XU Xiaofeng. Infrared weak small target detection algorithm based on embedded GPU[J]. Journal of Applied Optics, 2020, 41(5): 1089-1095. DOI: 10.5768/JAO202041.0506004 |
[5] | LI Xiaoning, LEI Tao, ZHONG Jiandan, TANG Zili, JIANG Ping. Detecting method of small vehicle targets based on improved SSD[J]. Journal of Applied Optics, 2020, 41(1): 150-155. DOI: 10.5768/JAO202041.0103004 |
[6] | Zhou Yuan, Zhang Jianming, Lin Xiao. Infrared small target detection using weighting LoG operator[J]. Journal of Applied Optics, 2017, 38(1): 114-119. DOI: 10.5768/JAO201738.0106003 |
[7] | CHEN Dong, LIN Jian-lin, MA De-bao. Small electro-optical target detection based on two-scale wavelet analysis[J]. Journal of Applied Optics, 2011, 32(3): 492-497. |
[8] | HE Peng-fei, SU Xin-yan, WANG jian. Small target detection based on image sequences[J]. Journal of Applied Optics, 2011, 32(2): 272-275. |
[9] | ZHANG Heng, LI You, LI Li-chun, LEI Zhi-hui. Scale-adaptive real-time detection for small targets[J]. Journal of Applied Optics, 2008, 29(1): 9-13. |
[10] | CHEN Dong-yan, ZHANG Qi, WANG Yan-ling, LUO Shi-tu. Implementation of maneuver target prediction in image tracking system[J]. Journal of Applied Optics, 2007, 28(1): 33-37. |
1. |
王婧骅,崔璨,张云飞,段玉玮,赵婉茹. 基于循环神经网络的异常用电数据检测方法. 电子设计工程. 2024(01): 120-123+128 .
![]() | |
2. |
彭雪玲,林珊玲,林志贤,郭太良. 改进的YOLOv5s太阳能电池片缺陷检测算法. 液晶与显示. 2024(02): 237-247 .
![]() | |
3. |
刘玉淇,吴一全. 基于机器视觉的太阳能电池片缺陷检测算法综述. 光学精密工程. 2024(06): 868-900 .
![]() | |
4. |
何翔,杨爱军,黎健生,陈彩云,游宏亮. 基于cycleGAN的太阳电池电致发光图像数据增强方法. 液晶与显示. 2024(08): 1057-1069 .
![]() | |
5. |
林维修,李峰,王海峰,许育燕,金科扬. 基于图像处理的光伏组件热斑缺陷检测方法. 计算技术与自动化. 2024(03): 121-126 .
![]() | |
6. |
李莉杰,高方,李元涛,田壮梅,吕莉源,张梦洁. 储能设备电池极片缺陷检测网络研究. 电力大数据. 2024(06): 22-31 .
![]() | |
7. |
张引贤,张展耀,张希雅. 基于边缘神经网络的海岛光伏表面异常检测. 浙江电力. 2024(12): 95-103 .
![]() | |
8. |
葛钊明,胡跃明. 基于改进YOLOv5的锂电池极片缺陷检测. 激光杂志. 2023(02): 25-29 .
![]() | |
9. |
何翔. 基于DCGANs的半片光伏组件电致发光图像增强技术. 应用光学. 2023(02): 314-322 .
![]() | |
10. |
刘耀迪,肖钰蕙,杨超. 智能化光伏缺陷检测系统. 光源与照明. 2023(06): 136-138 .
![]() | |
11. |
王云冰,付晓刚,牛源. 基于无人机光伏巡检的路线优化与故障检测. 上海电机学院学报. 2023(05): 275-280 .
![]() | |
12. |
艾上美,周剑峰,张必朝,张涛,王红斌. 基于改进SSD算法的光伏组件缺陷检测研究. 智慧电力. 2023(12): 53-58 .
![]() | |
13. |
刘敏,陈凌宇,钱洲亥,李治国. 光伏电池片弱边缘缺陷空耦超声特征检测. 制造业自动化. 2022(04): 191-195 .
![]() | |
14. |
符长虹,陈锟辉,鲁昆瀚,郑光泽,赵吉林. 面向边缘智能光学感知的航空紧固件旋转检测. 应用光学. 2022(03): 472-480 .
![]() | |
15. |
凌旭峰,周丽婕,祝毓,杨红卫,杨杰. 基于生成式自监督学习的太阳能电池板缺陷检测. 机械制造. 2022(07): 12-18 .
![]() |