SHEN Benlan, XU Xianfeng, YAO Lei, LUAN Shoucheng, WANG Hongmei. Design of imaging system for wide-range laser displacement sensor[J]. Journal of Applied Optics, 2022, 43(3): 386-391. DOI: 10.5768/JAO202243.0301002
Citation: SHEN Benlan, XU Xianfeng, YAO Lei, LUAN Shoucheng, WANG Hongmei. Design of imaging system for wide-range laser displacement sensor[J]. Journal of Applied Optics, 2022, 43(3): 386-391. DOI: 10.5768/JAO202243.0301002

Design of imaging system for wide-range laser displacement sensor

More Information
  • Received Date: November 29, 2021
  • Revised Date: March 29, 2022
  • Available Online: April 12, 2022
  • In order to solve the problems of short reference working distance and small measuring range of laser displacement sensors developed independently in China at present, an imaging optical system for a wide-range laser displacement sensor was designed, which was suitable for the long distance measurement. Based on the laser triangulation principle, combined with specific application requirements, the performance indicators of a wide-range laser displacement sensor and parameters of an imaging optical system were calculated. The five-piece lens structure was selected as the initial structure of the system, and the imaging optical system of wide-range laser displacement sensor was designed with optical design software. The optimal design and performance analysis of the system were completed, and the system with reference working distance of 1 000 mm, measuring range of ±500 mm and resolution of 0.4 mm was developed. The simulation results show that the system can achieve good imaging quality within the measuring range of ±500 mm. The proposed laser displacement sensor imaging system has the advantages of long working distance, wide measuring range and simple structure, which can meet the requirements of wide-range measurement at 1 000 mm.

  • [1]
    DING Dawei, ZHAO Zhengcai, LI Yao, et al. Calibration and capability assessment of on-machine measurement by integrating a laser displacement sensor[J]. The International Journal of Advanced Manufacturing Technology,2021,113(7/8):2301-2313.
    [2]
    DING Dawei, ZHAO Zhengcai, HUANG Rui, et al. Error modeling and path planning for freeform surfaces by laser triangulation on-machine measurement[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-11.
    [3]
    MA Jinyu, CHEN Xin, DING Guoqing, et al. Research on angle setting error of diameter measurement based on laser displacement sensors[J]. Infrared and Laser Engineering,2021,50(5):194-200.
    [4]
    陈金辉. 基于激光位移传感器的零件轮廓曲线重建策略[J]. 南昌大学学报(工科版),2020,42(1):76-80.

    CHEN Jinhui. Reconstructionstrategy for profile curve of part using a laser displacement sensor[J]. Journal of Nanchang University (Engineering & Technology),2020,42(1):76-80.
    [5]
    王帆, 吕彦明, 刘泽涛. 基于激光位移传感器的航空叶片测量技术研究[J]. 工具技术,2019,53(6):104-107. doi: 10.3969/j.issn.1000-7008.2019.06.024

    WANG Fan, LYU Yanming, LIU Zetao. Research on aviation blade measurement technology based on laser displacement sensor[J]. Tool Engineering,2019,53(6):104-107. doi: 10.3969/j.issn.1000-7008.2019.06.024
    [6]
    YANG Pengcheng, HU Dan, WANG Congyi, et al. Weld surface imperfection detection by 3D reconstruction of laser displacement sensing[C]//2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). December 25-27, 2020, Harbin, China: IEEE, 2020: 2102-2105.
    [7]
    吴晓军, 白韶红, 宋韧, 等. 激光位移传感器在轨道交通桥梁监测中的应用[J]. 现代城市轨道交通,2019(4):44-48.

    WU Xiaojun, BAI Shaohong, SONG Ren, et al. Application of laser displacement sensor in rail transit bridge monitoring[J]. Modern Urban Transit,2019(4):44-48.
    [8]
    伍川辉, 廖家, 熊仕勇, 等. 基于激光传感器的槽型轨轮廓匹配方法[J]. 浙江大学学报(工学版),2021,55(9):1607-1614.

    WU Chuanhui, LIAO Jia, XIONG Shiyong, et al. Contour matching method of groove track based on laser sensor[J]. Journal of Zhejiang University (Engineering Science),2021,55(9):1607-1614.
    [9]
    MOLLEDA J, USAMENTIAGA R, MILLARA Á F, et al. A profile measurement system for rail quality assessment during manufacturing[J]. IEEE Transactions on Industry Applications,2016,52(3):2684-2692. doi: 10.1109/TIA.2016.2524459
    [10]
    冯俊艳, 冯其波, 匡萃方. 高精度激光三角位移传感器的技术现状[J]. 应用光学,2004,25(3):33-36. doi: 10.3969/j.issn.1002-2082.2004.03.011

    FENG Junyan, FENG Qibo, KUANG Cuifang. Present status of high precision laser displacement sensor based on triangulation[J]. Journal of Applied Optics,2004,25(3):33-36. doi: 10.3969/j.issn.1002-2082.2004.03.011
    [11]
    孙浩, 薛丹丹, 韩焱. 基于小孔光学系统与面阵CCD的激光位移传感器系统设计[J]. 应用光学,2012,33(6):1152-1155.

    SUN Hao, XUE Dandan, HAN Yan. Laser displacement sensor system based on pinhole optical system and array CCD[J]. Journal of Applied Optics,2012,33(6):1152-1155.
    [12]
    张爽, 朱万彬, 李健, 等. 激光位移传感器传感探头微小型光学系统设计[J]. 中国光学,2018,11(6):1001-1010. doi: 10.3788/co.20181106.1001

    ZHANG Shuang, ZHU Wanbin, LI Jian, et al. Design of micro-optical system for laser displacement sensor sensing probe[J]. Chinese Optics,2018,11(6):1001-1010. doi: 10.3788/co.20181106.1001
    [13]
    周宇, 李粤, 李维平, 等. 激光位移传感器设计与标定测试[J]. 传感器与微系统,2020,39(11):92-95.

    ZHOU Yu, LI Yue, LI Weiping, et al. Design and calibration test of laser displacement sensor[J]. Transducer and Microsystem Technologies,2020,39(11):92-95.
    [14]
    崔昊, 郭锐, 李兴强, 等. 基于非线性拟合的激光三角位移传感器标定方法[J]. 中国激光,2020,47(9):1-10.

    CUI Hao, GUO Rui, LI Xingqiang, et al. Calibration of laser triangular displacement sensor based on nonlinear fitting[J]. Chinese Journal of Lasers,2020,47(9):1-10.
    [15]
    马浩然, 丁雅斌. 基于双目视觉的激光位移传感器标定方法[J]. 浙江大学学报(工学版),2021,55(9):1634-1642.

    MA Haoran, DING Yabin. Calibration method of laser displacement sensor based on binocular vision[J]. Journal of Zhejiang University (Engineering Science),2021,55(9):1634-1642.
    [16]
    沃伦J. 史密斯. 现代光学工程[M]. 周海宪, 程云芳, 译. 4版. 北京: 化学工业出版社, 2011: 51-52.

    SMITH W J. Modern optical engineering[M]. translated by ZHOU Haixian, CHENG Yunfang. 4th ed. Beijing: Chemical Industrial Press, 2011: 51-52.
    [17]
    MIKS A, NOVAK J, NOVAK P. Analysis of imaging for laser triangulation sensors under Scheimpflug rule[J]. Optics Express,2013,21(15):18225-18235. doi: 10.1364/OE.21.018225
    [18]
    MIKS A, NOVAK J. Estimation of accuracy of optical measuring systems with respect to object distance[J]. Optics Express,2011,19(15):14300-14314. doi: 10.1364/OE.19.014300
    [19]
    张以谟. 应用光学[M]. 3版. 北京: 电子工业出版社, 2008: 137-138.

    ZHANG Yimo. Applied optics [M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2008: 137-138. .
  • Cited by

    Periodical cited type(5)

    1. 闫烁,万嵩林,李瀚捷,韩宜池,牛振岐,吴珍,路晴,江国昌,沈鹏程,魏朝阳. 离轴非球面干涉测量中标记点最优排布求解与畸变误差校正方法(特邀). 光学学报(网络版). 2024(03): 33-42 .
    2. 罗志超,何煜,李瑶艳,邵传强,杨晓飞. 离轴抛物面反射镜的投影畸变校正研究. 激光与红外. 2024(11): 1744-1750 .
    3. 郝三峰,张建,杨建峰. F/0.78高次非球面零位补偿检测与投影畸变校正. 光子学报. 2023(02): 39-53 .
    4. 吴天强,王义贺. 基于改进深度学习自编码的图像边沿畸变校正算法研究. 光电子·激光. 2021(02): 149-156 .
    5. 苏虹,张运强. 自由空间中光信息传输模型下非线性JTC光学图像校正方法. 激光杂志. 2020(09): 127-131 .

    Other cited types(4)

Catalog

    Article views (501) PDF downloads (94) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return