Citation: | YE Wei, DU Pengfei, XIAO Sheng, LI Mengfei. Influence of InAlAs concentration on In0.83Al0.17As/In0.83Ga0.17As infrared detector characteristics[J]. Journal of Applied Optics, 2022, 43(2): 317-324. DOI: 10.5768/JAO202243.0204002 |
The performance of infrared detector is affected by the doping concentration of each layer of internal structure, and the doping concentration of multiplication layer will significantly change the performance of the device. In order to reduce the dark current and improve the performance of the device, the ternary compound In0.83Al0.17As was used as the multiplication layer material, and with the help of simulation software Silvaco, the effects of the doping concentration in the multiplication layer of In0.83Al0.17As/ In0.83Ga0.17As infrared detector on the electric field intensity, current characteristics and optical responsivity of the device were studied in detail. The results show that with the increase of doping concentration in the multiplication layer, the peak value of electric field intensity in the multiplication layer increases, and the dark current and optical responsivity of the device decreases respectively. It is further found that when the doping concentration in the multiplication layer is 2×1016 cm−3, the device obtains the optimal performance, the dark current density is 0.621 44 A/cm2, and when the wavelength is 1.5 μm, the optical responsivity and specific detectivity are 0.954 4 A/W and 1.947 5×109 cmHz1/2W−1, respectively.
[1] |
JIN C, CHEN J, XU Q, et al. Electrical and optical performances of InGaAs/GaAsSb superlattice short-wavelength infrared detectors[J]. Optical Engineering,2017,56(5):057102. doi: 10.1117/1.OE.56.5.057102
|
[2] |
MARTYNIUK P, ANTOSZEWSKI J, MARTYNIUK M, et al. New concepts in infrared photodetector designs[J]. Applied Physics Reviews,2014,1(4):041102. doi: 10.1063/1.4896193
|
[3] |
GRAVRAND O, ROTHMAN J, CERVERA C, et al. HgCdTe detectors for space and science imaging: general issues and latest achievements[J]. Journal of Electronic Materials,2016,45(9):4532-4541. doi: 10.1007/s11664-016-4516-3
|
[4] |
徐强, 潘丰, 黄莉, 等. 激光干扰红外成像系统的噪声等效温差及信噪比分析[J]. 应用光学,2017,38(6):990-994.
XU Qiang, PAN Feng, HUANG Li, et al. NETD and SNA analysis of laser jamming infrared imaging system[J]. Journal of Applied Optics,2017,38(6):990-994.
|
[5] |
HANSEN M P, MALCHOW D S. Overview of SWIR detectors, cameras, and applications[C]//International Society for Optics and Photonics, Orlando, Florida, United States: SPIE, 2008, 6939: 69390I.
|
[6] |
TSUCHIKAWA T, KANEDA H, ISHIHARA D, et al. Pixel-based spectral characterization of mid-infrared Si array detectors for astronomical observations in space[J]. Publications of the Astronomical Society of the Pacific,2020,132(1013):074502. doi: 10.1088/1538-3873/ab8aa8
|
[7] |
XIAO Y H, ZHEN H. Pedestrian crowd detection based unmanned aerial vehicle infrared imagery[J]. Applied Mechanics and Materials, 2017, 873: 347-352.
|
[8] |
ZHAO Y, ZHANG D, QIN L, et al. InGaAs/InP avalanche photodiodes with dark current limited by generation-recombination[J]. Optics Express,2011,19(9):8546-8556. doi: 10.1364/OE.19.008546
|
[9] |
RIBORDY G, GISIN N, GUINNARD O, et al. Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance[J]. Journal of Modern Optics,2004,51(9/10):1381-1398.
|
[10] |
LEE M H, HA C, JEONG H S, et al. Wavelength-division-multiplexed InGaAs/InP avalanched photodiodes for quantum key distributions[J]. Optics Communications,2016,361:162-167. doi: 10.1016/j.optcom.2015.10.050
|
[11] |
LIU J J, HO W J, CHEN J Y, et al. The fabrication and characterization of InAlAs/InGaAs APDs based on a mesa-structure with polyimide passivation[J]. Sensors,2019,19(15):3399. doi: 10.3390/s19153399
|
[12] |
ZHANG Z, MIAO G, SONG H, et al. High in content InGaAs near-infrared detectors: growth, structural design and photovoltaic properties[J]. Applied Physics A,2017,123(4):219. doi: 10.1007/s00339-017-0835-3
|
[13] |
朱敏, 陈俊, 吕加兵, 等. p-i-n InP/In0.53Ga0.47As/InP探测器结构优化[J]. 光子学报,2016,45(1):123-127.
ZHU Min, CHEN Jun, LYU Jiabing, et al. Optimization of p-i-n InP/In0.53Ga0.47As/InP photodetector[J]. Acta Photonica Sinica,2016,45(1):123-127.
|
[14] |
蒋毅, 陈俊. 基于异质结倍增层的InAlAsSb SACM雪崩光电二极管的优化[J]. 红外与毫米波学报,2019,38(5):598-603. doi: 10.11972/j.issn.1001-9014.2019.05.009
JIANG Yi, CHEN Jun. Optimization of InAlAsSb SACM APD with a heterojunction multiplication layer[J]. Journal of Infrared and Millimeter Waves,2019,38(5):598-603. doi: 10.11972/j.issn.1001-9014.2019.05.009
|
[15] |
王航, 袁正兵, 谭明, 等. 倍增层厚度对In0.53Ga0.47As/InP雪崩二极管器件特性的影响[J]. 光学学报,2020,40(18):16-20.
WANG Hang, YUAN Zhengbing, TAN Ming, et al. Effect of multiplier layer thickness on the characteristics of In0.53Ga0.47As/InP avalanche diode[J]. Acta Optica Sinica,2020,40(18):16-20.
|
[16] |
STOCKER H J, ASPNES D E. Surface chemical reactions on In0.53Ga0.47As[J]. Applied Physics Letters,1983,42(1):85-87. doi: 10.1063/1.93736
|
[17] |
ZHANG D, TANG Y, QIU X, et al. Use of synergistic effects of the co-catalyst, pn heterojunction, and porous structure for improvement of visible-light photocatalytic H2 evolution in porous Ni2O3/Mn0.2Cd0.8S/Cu3PCu2S[J]. Journal of Alloys and Compounds,2020,845:155569. doi: 10.1016/j.jallcom.2020.155569
|
[18] |
ALIANE A, OUVRIER-BUFFET J L, LUDURCZAK W, et al. Fabrication and characterization of sensitive vertical PIN germanium photodiodes as infrared detectors[J]. Semiconductor Science and Technology,2020,35(3):035013. doi: 10.1088/1361-6641/ab6bf7
|
[19] |
EASLEY J, MARTIN C R, ETTENBERG M H, et al. InGaAs/GaAsSb Type-II superlattices for short-wavelength infrared detection[J]. Journal of Electronic Materials,2019,48(10):6025-6029. doi: 10.1007/s11664-019-07441-x
|
[20] |
BELARBI M, BEGHDAD M, MEKEMECHE A. Simulation and optimization of n-type interdigitated back contact silicon heterojunction (IBC-SiHJ) solar cell structure using Silvaco Tcad Atlas[J]. Solar Energy,2016,127:206-215. doi: 10.1016/j.solener.2016.01.020
|
[21] |
DEMCHENKO O, ZYKOV D, KURBANOVA N. Research possibilities of Silvaco TCAD for physical simulation of gallium nitride power transistor[C]//AIP Conference Proceedings. AIP Publishing LLC, 2016, 1772(1): 060007.
|
[22] |
TAN C K, SUN W, WIERER Jr J J, et al. Effect of interface roughness on Auger recombination in semiconductor quantum wells[J]. AIP Advances,2017,7(3):035212. doi: 10.1063/1.4978777
|
[23] |
ZHU L, DENG Z, HUANG J, et al. Low frequency noise-dark current correlations in HgCdTe infrared photodetectors[J]. Optics Express,2020,28(16):23660-23669. doi: 10.1364/OE.399565
|
[24] |
AKIBA M, TSUJINO K, SASAKI M. Ultrahigh-sensitivity single-photon detection with linear-mode silicon avalanche photodiode[J]. Optics Letters,2010,35(15):2621-2623. doi: 10.1364/OL.35.002621
|
[25] |
ZHANG Y G, GU Y, CHEN X Y, et al. IGA-rule 17 for performance estimation of wavelength-extended InGaAs photodetectors: validity and limitations[J]. Applied Optics,2018,57(18):D141-D144. doi: 10.1364/AO.57.00D141
|
[26] |
SIMONE G, DYSON M J, WEIJTENS C H L, et al. On the origin of dark current in organic photodiodes[J]. Advanced Optical Materials,2020,8(1):1901568. doi: 10.1002/adom.201901568
|
[27] |
SFINA N, AMMAR I, LAZZARI J L, et al. Modelization of electrical and optical characteristics of short-wave infrared type I InGaAsBi/InGaAs/InP quantum wells pin detector[J]. Physica Scripta,2020,96(3):035802.
|
[28] |
YAO X, ZHANG X, KANG T, et al. Photoelectronic properties of end-bonded InAsSb nanowire array detector under weak light[J]. Nanoscale Research Letters,2021,16(1):1-10. doi: 10.1186/s11671-020-03464-0
|
[29] |
WU D, LI J, DEHZANGI A, et al. Mid-wavelength infrared high operating temperature pBn photodetectors based on type-II InAs/InAsSb superlattice[J]. AIP Advances,2020,10(2):025018. doi: 10.1063/1.5136501
|
[30] |
DENG G, YANG W, GONG X, et al. High-performance uncooled InAsSb-based pCBn mid-infrared photodetectors[J]. Infrared Physics & Technology,2020,105:103260.
|
1. |
朱朝阳,叶伟,彭慧龙,陈昱坤. 倍增层Si浓度对β-FeSi_2/Si红外探测器性能的影响研究. 河南科技. 2025(01): 73-77 .
![]() | |
2. |
方小坤,叶伟,权贝贝,朱朝阳,萧生. Ⅰ型倍增层对异质SAM结构InSb-APD红外探测器性能的影响. 应用光学. 2024(03): 659-664 .
![]() |