Citation: | ZHANG Jianhua, GAO Shuaihua. Auxiliary alignment technology for aerial refueling based on real-time image processing[J]. Journal of Applied Optics, 2022, 43(2): 234-239. DOI: 10.5768/JAO202243.0202001 |
Aiming at the difficult problem of refueling docking in aerial refueling flight test, an auxiliary alignment system for refueling docking section based on real-time image processing was designed. The accurate relative position between the fuel receiving head and the center of the refueling cone sleeve was calculated through image measurement technology, so as to realize the real-time synchronous display of position parameters and video images, which was used for the auxiliary alignment of air refueling docking. The key technologies involved in the system, such as cone tracking technology under complex optical conditions, camera calibration technology based on constraints and real-time measurement technology of relative position of oil feeding and receiving components were studied. The experimental results show that the algorithm can realize fast and stable recognition and tracking of cone images in complex air environment. Binocular vision forward intersection measurement was used to calculate the relative position between the refueling cone sleeve and the fuel receiving head in real time. Compared with the post-processing results, the accuracy is better than 0.1 m, which can assist the pilot in air refueling docking operation and improve the success rate of refueling and receiving docking.
[1] |
李振, 时静, 李波. 基于图像技术的空中加油辅助指引系统[J]. 飞航导弹,2017,12(4):51-54.
LI Zhen, SHI Jing, LI Bo. Aerial refueling assistant command and guidance system based on image technology[J]. Aerodynamic Missile Journal,2017,12(4):51-54.
|
[2] |
MARTINEZ C,RICHARDSON T,CAMPOY P.Towards autonomous air-to-air refuelling for UAVs using visual information[C].Proceedings of IEEE International Conference on Robotics and Automation(ICRA), Karlsruhe, Germany, IEEE, 2013: 5756-5762.
|
[3] |
钟德星, 李永强, 李严桵. 无人机自主空中加油技术现状及发展趋势[J]. 航空科学技术,2014,25(5):1-6. doi: 10.3969/j.issn.1007-5453.2014.05.001
ZHONG Dexing, LI Yongqiang, LI Yanrui. State-of-the-art and tendency of autonomous aerial refueling technologies for unmanned aerial vehicles[J]. Aeronautical Science & Technology,2014,25(5):1-6. doi: 10.3969/j.issn.1007-5453.2014.05.001
|
[4] |
李宏图, 官巍, 宋吉江, 等. 空中加受油仿真中关键技术的研究[J]. 系统仿真学报,2015,27(9):2225-2231.
LI Hongtu, GUAN Wei, SONG Jijiang, et al. Study on key techniques about refueling simulation in air[J]. Journal of System Simulation,2015,27(9):2225-2231.
|
[5] |
马跃博. 基于卷积神经网络的自主空中加油识别测量技术研究[D]. 北京: 中国科学院大学, 2020.
MA Yuebo. Research on autonomous aerial refueling recognition and measurement technology based on convolutional neural[D]. Beijing: University of Chinese Academy of Sciences, 2020.
|
[6] |
鲍继宇, 王龙, 董新民. 硬管式无人机AAR双目视觉导航算法研究[J]. 应用光学,2017,38(6):910-916.
BAO Jiyu, WANG Long, DONG Xinmin. Binocular vision navigation algorithm for AAR of flying boom UAV[J]. Journal of Applied Optics,2017,38(6):910-916.
|
[7] |
符毅, 孔星炜, 董新民, 等. 基于改进UKF的加油机位姿预测方法[J]. 应用光学,2016,37(6):860-865.
FU Yi, KONG Xingwei, DONG Xinmin, et al. Tanker pose prediction based on modified unscented kalman filter[J]. Journal of Applied Optics,2016,37(6):860-865.
|
[8] |
朱虎. 基于视觉/GPS混合引导的无人机空中加油对接控制[D]. 南京: 南京航空航天大学, 2016.
ZHU Hu. Vision/GPS based docking control for UAV aerial refueling [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
|
[9] |
牛畅, 黄银和, 尹奎英. 基于分块SURF特征提取的图像目标跟踪算法[J]. 激光与红外,2017,47(12):1541-1547. doi: 10.3969/j.issn.1001-5078.2017.12.016
NIU Chang, HUANG Yinhe, YIN Kuiying. Image target tracking algorithm based on blocked SURF extraction[J]. Laser & Infrared,2017,47(12):1541-1547. doi: 10.3969/j.issn.1001-5078.2017.12.016
|
[10] |
王鑫, 侯志强, 余旺盛, 等. 基于多层卷积特征融合的目标尺度自适应稳健跟踪[J]. 光学学报,2017,37(11):115005-1-115005-12.
WANG Xin, HOU Zhiqiang,YU Wangsheng, et al. Target scale adaptive robust tracking based on fusion of multilayer convolutional features[J]. Acta Optica Sinica,2017,37(11):115005-1-115005-12.
|
[11] |
WANG L J, OUYANG W L, WANG X G, et al. Visual tracking with fully convolution networks[C]. Conference on Computer Vision, Santiago Chile: IEEE,2015: 3119-3127.
|
[12] |
杨博文. 锥套图像检测识别与飞行演示验证研究[D]. 南京: 南京航空航天大学, 2016.
YANG Bowen. Research on detection identification algorithm of drogue images and flight demonstration[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
|
[13] |
冯文灏. 近景摄影测量[M]. 武汉: 武汉大学出版社, 2001.
FENG Wenhao. Close-range photogrammetry[M]. Wuhan: Wuhan University Press, 2001.
|
[14] |
赵亮亮. 一种基于左右视线的立体图像匹配算法[J]. 计算机仿真, 2010, 27(3): 220-223.
ZHAO Liangliang. A stereo matching algorithm based on left and right views[J]. Computer Simulation, 2010, 27(3): 220-223.
|
[15] |
张建花, 柳琦, 聂荣华. 机载影像测量消抖技术研究[J]. 弹箭与制导学报,2016,36(1):174-176.
ZHANG Jianhua, LIU Qi, NIE Ronghua. The research of airborne image measurement debounce technology[J]. Journal of Projectiles, Roktets, Missiles and Guidance,2016,36(1):174-176.
|
[16] |
武汉大学测绘学院测量平差学科组编. 误差理论与测量平差基础[M]. 3版. 武汉: 武汉大学出版社, 2014.
Wuhan University Error theory and measurement adjustment basics. Survey adjustment group of school of surveying and mapping, [M]. 3th ed. Wuhan: Wuhan University Press, 2014.
|
[1] | LIU Xin, WANG Cong, LIU Yongqiang, YUAN Yang, CHEN Xiaolei, ZHANG Yu, HAN Juanni, ZHANG Chaofan. Rapid Ritchey-Common measurement method of large-aperture flat mirror[J]. Journal of Applied Optics, 2022, 43(4): 707-713. DOI: 10.5768/JAO202243.0403003 |
[2] | ZHOU Yan, WU Shibin, WANG Lihua, LI Jie, DU Junfeng, BIAN Jiang. Design of catadioptric middle infrared diffractive telescope system with large aperture[J]. Journal of Applied Optics, 2021, 42(5): 767-774. DOI: 10.5768/JAO202142.0501002 |
[3] | Ba Hubing, Miao Li. Design of large aperture and long focal length zoom optical system[J]. Journal of Applied Optics, 2018, 39(5): 644-649. DOI: 10.5768/JAO201839.0501009 |
[4] | Li Quanchao, Li Lei, Tan Songnian, Zhang Hongwei. Design and analysis for large aperture primary aluminum mirrors[J]. Journal of Applied Optics, 2016, 37(3): 337-341. DOI: 10.5768/JAO201637.0301003 |
[5] | Zhang Wen-ying, Zhang Guo-yu, Zhang Lei. Optical system design of large-diameter off-axis reflection-type star simulator[J]. Journal of Applied Optics, 2014, 35(6): 949-954. |
[6] | WANG Jian-jun, YUAN Lü-jun, WU Zhong-hua, ZHOU Xin. PVD Si coatings on large-aperture SiC mirror for surface-modification[J]. Journal of Applied Optics, 2013, 34(5): 854-859. |
[7] | HAN Juan, DUAN Jia-you, ZHANG Jun. Alignment method for large aperture aspheric mirror[J]. Journal of Applied Optics, 2012, 33(3): 490-495. |
[8] | DONG Bing, FU Yue-gang, LIU Zhi-ying. Large aperture off-axis collimator: primary mirror structure and optical inspection[J]. Journal of Applied Optics, 2011, 32(4): 714-717. |
[9] | ZHANG Bao-an, CHEN He-ming, ZHU Jian-qiang. Quality control in large-aperture laser glass optical processing[J]. Journal of Applied Optics, 2009, 30(1): 96-100. |
[10] | HU Ji-xian. Design of long focal length large-aperture optical zoom system[J]. Journal of Applied Optics, 2007, 28(5): 569-572. |
1. |
李道京,高敬涵,崔岸婧,周凯,吴疆. 2m衍射口径星载双波长陆海激光雷达系统研究. 中国激光. 2022(03): 123-134 .
![]() | |
2. |
杜康,刘春雨,刘帅,宋伟阳,徐婷婷. 同轴超紧凑型主三镜一体化光学系统的设计. 激光与光电子学进展. 2020(07): 263-269 .
![]() | |
3. |
张龙,王孝坤,程强,胡海翔. 拼接式望远镜主镜衍射效应研究. 应用光学. 2020(03): 447-454 .
![]() | |
4. |
蒲小琴,董全林,余子箫,张斯明,邵静怡,刘业楠,王军伟. 半主动激光导引头光学系统设计及线性度分析. 航天器环境工程. 2020(03): 303-309 .
![]() |