Citation: | HE Lin, MA Guolu, SONG Zijun, ZHAO Yong, ZENG Guoying, RAO Jian. Attitude combined measurement method in large-scale obstructed space[J]. Journal of Applied Optics, 2022, 43(1): 95-99. DOI: 10.5768/JAO202243.0103004 |
An attitude measurement method based on multi-sensor combination was proposed to solve the problem of target feature points occlusion due to spatial obstruction in large-scale spatial attitude measurement. The single-coordinate reference measurement of the measured feature point was realized by the digital level and the attitude probe, and the initial attitude of the target was obtained by the level difference of the feature point and its known geometric constraint relationship. On this basis, the attitude rotation matrix between high-precision tilt sensor and measured target was calibrated, and then the target attitude was calculated in real time from the sensor output based on the coordinate transformation theory. The experimental results show that the relative accuracy of attitude measurement is better than 0.001 5° in the range of 10 m, and the repeatability measurement error is less than 0.000 4°, which can be used for the precise real-time measurement of large-scale obstructed spatial attitude.
[1] |
束安, 裴浩东, 周姗姗, 等. 非合作航天器的立体视觉位姿测量[J]. 光学精密工程,2021,29(3):493-502. doi: 10.37188/OPE.20212903.0493
SHU An, PEI Haodong, ZHOU Shanshan, et al. Stereo measurement of position and attitude of non-cooperative spacecraft[J]. Optics and Precision Engineering,2021,29(3):493-502. doi: 10.37188/OPE.20212903.0493
|
[2] |
张刘港, 熊芝, 冯维, 等. 基于视觉与激光准直的激光跟踪姿态角测量方法[J]. 仪器仪表学报,2020,41(8):30-36.
ZHANG Liugang, XIONG Zhi, FENG Wei, et al. Laser tracking attitude angle measurement method based on vision and laser collimation[J]. Chinese Journal of Scientific Instrument,2020,41(8):30-36.
|
[3] |
陆野, 马国鹭, 曾国英, 等. 遮挡区域空间位姿的多传感组合测量方法研究[J]. 应用光学,2020,41(3):565-570. doi: 10.5768/JAO202041.0303004
LU Ye, MA Guolu, ZENG Guoying, et al. Research on multi-sensor combination method for estimating relative pose[J]. Journal of Applied Optics,2020,41(3):565-570. doi: 10.5768/JAO202041.0303004
|
[4] |
ZHANG Y C, LUO H B, SKITMORE M, et al. Optimal camera placement for monitoring safety in metro station construction work[J]. Journal of Construction Engineering and Management,2019,145(1):04018118. doi: 10.1061/(ASCE)CO.1943-7862.0001584
|
[5] |
MUELANER J E, WANG Z, KEOGH P S, et al. Uncertainty of measurement for large product verification: evaluation of large aero gas turbine engine datums[J]. Measurement Science and Technology,2016,27(11):115003. doi: 10.1088/0957-0233/27/11/115003
|
[6] |
KOSAREVSKY S. Practical way to measure large-scale 2D surfaces using repositioning on coordinate-measuring machines[J]. Measurement,2010,43(6):837-841. doi: 10.1016/j.measurement.2010.02.015
|
[7] |
李辉, 刘巍, 张洋, 等. 激光跟踪仪多基站转站精度模型与误差补偿[J]. 光学精密工程,2019,27(4):771-783. doi: 10.3788/OPE.20192704.0771
LI Hui, LIU Wei, ZHANG Yang, et al. Model establishment and error compensation of laser tracker station-transfer[J]. Optics and Precision Engineering,2019,27(4):771-783. doi: 10.3788/OPE.20192704.0771
|
[8] |
王德元, 张晓琳, 马强, 等. 多站大尺寸测量仪坐标系转换的Procrustes方法[J]. 光学精密工程,2014,22(4):949-955. doi: 10.3788/OPE.20142204.0949
WANG Deyuan, ZHANG Xiaolin, MA Qiang, et al. Procrustes method in coordinate transformation on multi-station of large scale measurement[J]. Optics and Precision Engineering,2014,22(4):949-955. doi: 10.3788/OPE.20142204.0949
|
[9] |
关瑞芬, 杨凌辉, 王丽君, 等. 基于正交柱面成像的空间物体位姿精密测量[J]. 光学学报,2016,36(11):126-134.
GUAN Ruifen, YANG Linghui, WANG Lijun, et al. Position and attitude precision measurement of spatial objects based on orthogonal cylindrical imaging[J]. Acta Optica Sinica,2016,36(11):126-134.
|
[10] |
MAISANO D A, JAMSHIDI J, FRANCESCHINI F, et al. Indoor GPS: system functionality and initial performance evaluation[J]. International Journal of Manufacturing Research,2008,3(3):335-349. doi: 10.1504/IJMR.2008.019214
|
[11] |
潘廷耀, 范百兴, 易旺民, 等. 大尺寸动态测量技术综述[J]. 测绘与空间地理信息,2015,38(8):70-72. doi: 10.3969/j.issn.1672-5867.2015.08.023
PAN Tingyao, FAN Baixing, YI Wangmin, et al. Overview of large-scale dynamic measurement metrology[J]. Geomatics and Spatial Information Technology,2015,38(8):70-72. doi: 10.3969/j.issn.1672-5867.2015.08.023
|
[12] |
隆昌宇, 邾继贵, 郭寅, 等. 基于非参数测量模型的摄影测量方法研究[J]. 光学学报,2014,34(12):201-209.
LONG Changyu, ZHU Jigui, GUO Yin, et al. Study on close-range photogrammetry based on nonparameteric measurement model[J]. Acta Optica Sinica,2014,34(12):201-209.
|
[13] |
程志峰. 基于激光跟踪仪的FAST馈源舱位姿测量技术研究[D]. 南京: 战略支援部队信息工程大学, 2017.
CHENG Zhifeng. On position and orientation measurement technics of FAST's feed cabin by laser tracker[D]. Nanjing: PLA Strategic Support Force Information Engineering University, 2017.
|
[14] |
马一心, 范百兴, 黄剑. 多台激光跟踪仪联合动态位姿测量精度评定方法研究[J]. 测绘工程,2021,30(2):55-59.
MA Yixin, FAN Baixing, HUANG Jian. Research on the evaluation method of the accuracy of combind dynamic position and attitude measurement of multiple laser trackers[J]. Engineering of Surveying and Mapping,2021,30(2):55-59.
|
[15] |
朱绪胜, 刘蕾, 陈雪梅. 基于蒙特卡洛仿真的车间现场激光跟踪仪测量站位优化[J]. 计算机集成制造系统,2020,26(11):3001-3010.
ZHU Xusheng, LIU Lei, CHEN Xuemei. Measurement station optimization for laser tracker in-situ using based on Monte-Carlo simulation[J]. Computer Integrated Manufacturing System,2020,26(11):3001-3010.
|
[16] |
陈洋, 林嘉睿, 高扬, 等. 视觉与倾角传感器组合相对位姿测量方法[J]. 光学学报,2015,35(12):173-181.
CHEN Yang, LIN Jiarui, GAO Yang, et al. A hybrid of vision and inclination sensor method for estimating relative pose[J]. Acta Optica Sinica,2015,35(12):173-181.
|
[17] |
于成浩, 柯明, 杜涵文. 大尺寸空间中激光跟踪仪和水准仪的高程测量结果比较[J]. 工程勘察,2007(6):46-48.
YU Chenghao, KE Ming, DU Hanwen. Comparison of height measurement results between laser tracker and level in large scale space[J]. Geotechnical Investigation and Surveying,2007(6):46-48.
|
[1] | XI Xiaotian, HAN Jun, ZHANG Yan. Design of large field of view and high-resolution compound eye optical system[J]. Journal of Applied Optics, 2024, 45(2): 314-320. DOI: 10.5768/JAO202445.0201006 |
[2] | ZHANG Yong, LIU Weiping, MA Sasa, LI Zhiwei, ZHOU Bin. Optical system design of night vision goggles with large field of view and low illumination[J]. Journal of Applied Optics, 2023, 44(3): 636-642. DOI: 10.5768/JAO202344.0304002 |
[3] | ZHANG Xinting, KANG Lei, WU Qianqian. Optical system design of dual band CCTV fish-eye lens[J]. Journal of Applied Optics, 2021, 42(6): 1006-1010. DOI: 10.5768/JAO202142.0601009 |
[4] | HAN Peixian, REN Ge, LIU Yong, GUO Junli, ZHOU Jianwei, CUI Zhangang. Optical design of VIS/MWIR dual-band common-aperture system[J]. Journal of Applied Optics, 2020, 41(3): 435-440. DOI: 10.5768/JAO202041.0301001 |
[5] | LIU Haiying, WANG Yue, WANG Ying, ZHU Haibin, SUN Hongyu, JIANG Yanming, ZHAO Hanqing. Design of optical system for large-field of view aerocamera[J]. Journal of Applied Optics, 2019, 40(6): 980-986. DOI: 10.5768/JAO201940.0601008 |
[6] | Huang Yaolin, Wang Min, Lin Zheng. Design of zoom projection lens with large aperture and wild view[J]. Journal of Applied Optics, 2018, 39(3): 412-417. DOI: 10.5768/JAO201839.0305002 |
[7] | Tang Tian-jin, Li Yan. Dual-band common aperture optical system for infrared camera[J]. Journal of Applied Optics, 2015, 36(4): 513-518. DOI: 10.5768/JAO201536.0401004 |
[8] | Su Yang, An Zhi-yong, Li Qi, Xu Miao. Optical design of wide-angle large-relative-aperture f-θ lens[J]. Journal of Applied Optics, 2015, 36(3): 376-380. DOI: 10.5768/JAO201536.0301007 |
[9] | CAI Zhan-en, LIU Zhao-hui, HUANG Jing, NIU Jin-xing. Dual band night vision R-C system with wide field of view and large relative aperture[J]. Journal of Applied Optics, 2010, 31(4): 525-528. |
[10] | CHEN Xiao, YANG Jian-feng, MA Xiao-long, HE Ji-ke, HE Jian-wei, BAI Yu. Low F number LWIR optical system with wide field of view[J]. Journal of Applied Optics, 2010, 31(3): 350-353. |