LIU Huaiguang, DING Wancheng, HUANG Qianwen. Defects detection method of photovoltaic cells based on lightweightconvolutional neural network[J]. Journal of Applied Optics, 2022, 43(1): 87-94. DOI: 10.5768/JAO202243.0103003
Citation: LIU Huaiguang, DING Wancheng, HUANG Qianwen. Defects detection method of photovoltaic cells based on lightweightconvolutional neural network[J]. Journal of Applied Optics, 2022, 43(1): 87-94. DOI: 10.5768/JAO202243.0103003

Defects detection method of photovoltaic cells based on lightweightconvolutional neural network

More Information
  • Received Date: August 17, 2021
  • Revised Date: September 06, 2021
  • Available Online: September 16, 2021
  • The defects in photovoltaic cells affect the service life and power generation efficiency of the entire photovoltaic system. Aiming at the high missed detection rate of weak and small defects in the automatic detection of existing cells, a feature-enhanced lightweight convolutional neural network model was established. The feature enhancement extraction module was designed specifically to improve the extraction ability of weak boundaries. In addition, according to the principle of multi-scale recognition, a small target prediction layer was added to realize multi-scale feature prediction. In the experimental test, the mean average precision (mAP) of the model reaches to 87.55%, which is 6.78 percentage points higher than the traditional model. Moreover, the detection speed reaches to 40 fps, which meets the accuracy and real-time detection requirements.

  • [1]
    KABIR E, KUMAR P, KUMAR S, et al. Solar energy: potential and future prospects[J]. Renewable & Sustainable Energy Reviews,2018,82:894-900.
    [2]
    DHIMISH M, HOLMES V, MEHRDADI B, et al. The impact of cracks on photovoltaic power performance[J]. Journal of Science:Advanced Materials and Devices,2017,2(2):199-209. doi: 10.1016/j.jsamd.2017.05.005
    [3]
    刘怀广, 刘安逸, 周诗洋, 等. 基于深度神经网络的太阳能电池组件缺陷检测算法研究[J]. 应用光学,2020,41(2):327-336. doi: 10.5768/JAO202041.0202006

    LIU Huaiguang, LIU Anyi, ZHOU Shiyang, et al. Research on detection algorithm of solar cell component defects based on deep neural network[J]. Journal of Applied Optics,2020,41(2):327-336. doi: 10.5768/JAO202041.0202006
    [4]
    范程华, 王群京, 曹欣远, 等. 基于信号突变点校正的太阳能电池片缺陷检测方法[J]. 激光与光电子学进展,2020,57(6):246-251.

    FAN Chenghua, WANG Qunjing, CAO Xinyuan, et al. Defect detection method for solar cell based on signal catastrophe-points correction[J]. Laser & Optoelectronics Progress,2020,57(6):246-251.
    [5]
    王宪保, 李洁, 姚明海, 等. 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能,2014,27(6):517-523. doi: 10.3969/j.issn.1003-6059.2014.06.006

    WANG Xianbao, LI Jie, YAO Minghai, et al. Solar cells surface defects detection based on deep learning[J]. Pattern Recognition and Artificial Intelligence,2014,27(6):517-523. doi: 10.3969/j.issn.1003-6059.2014.06.006
    [6]
    陈超, 齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学,2019,46(3):63-73. doi: 10.11896/j.issn.1002-137X.2019.03.008

    CHEN Chao, QI Feng. Review on development of convolutional neural network and its application in computer vision[J]. Computer Science,2019,46(3):63-73. doi: 10.11896/j.issn.1002-137X.2019.03.008
    [7]
    杨铭, 文斌. 一种改进的YOLOv3-Tiny目标检测算法[J]. 成都信息工程大学学报,2020,35(5):531-536.

    YANG Ming, WEN Bin. An improved YOLOv3-Tiny target detection algorithm[J]. Journal of Chengdu University of Information Technology,2020,35(5):531-536.
    [8]
    LI J Y, SU Z F, GENG J H, et al. Real-time detection of steel strip surface defects based on improved YOLO detection network[J]. IFAC-PapersOnLine,2018,51(21):76-81. doi: 10.1016/j.ifacol.2018.09.412
    [9]
    QIU Z, WANG S, ZENG Z, et al. Automatic visual defects inspection of wind turbine blades via YOLO-based small object detection approach[J]. Journal of Electronic Imaging,2019,28(4):43023-1-11.
    [10]
    李文涛, 张岩, 莫锦秋, 等. 基于改进YOLOv3-tiny的田间行人与农机障碍物检测[J]. 农业机械学报,2020,51(s1):1-8. doi: 10.6041/j.issn.1000-1298.2020.S1.001

    LI Wentao, ZHANG Yan, MO Jinqiu, et al. Detection of pedestrian and agricultural vehicles in field based on improved YOLOv3-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):1-8. doi: 10.6041/j.issn.1000-1298.2020.S1.001
    [11]
    ZHANG Y, SHEN Y L, ZHANG J. An improved tiny-yolov3 pedestrian detection algorithm[J]. Optik,2019,183:17-23. doi: 10.1016/j.ijleo.2019.02.038
    [12]
    JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection [EB/OL]. [2021-07- 20]. https://arxiv.org/abs/1807.11590.
    [13]
    徐建桥, 吴俊, 陈向成, 等. 基于规范化样本拆分的轴承缺陷检测[J]. 应用光学,2021,42(2):327-333. doi: 10.5768/JAO202142.0203006

    XU Jianqiao, WU Jun, CHEN Xiangcheng, et al. Bearing defects detection based on standardized sample split[J]. Journal of Applied Optics,2021,42(2):327-333. doi: 10.5768/JAO202142.0203006
    [14]
    PARK J H, HWANG H W, MOON J H, et al. Automated identification of cephalometric landmarks: part 1—comparisons between the latest deep-learning methods YOLOV3 and SSD[J]. The Angle Orthodontist,2019,89(6):903-909. doi: 10.2319/022019-127.1
    [15]
    吴天舒, 张志佳, 刘云鹏, 等. 基于改进SSD的轻量化小目标检测算法[J]. 红外与激光工程,2018,47(7):47-53.

    WU Tianshu, ZHANG Zhijia, LIU Yunpeng, et al. A lightweight small object detection algorithm based on improved SSD[J]. Infrared and Laser Engineering,2018,47(7):47-53.
  • Related Articles

    [1]LU Xiaoyan, SHEN Meng, WANG Jie, LI Jiaheng, YANG Yizhou, HE Xi, CAO Yuju, PANG Lan. Long-time tracking technology for ground targets based on deep learning[J]. Journal of Applied Optics, 2025, 46(2): 343-354. DOI: 10.5768/JAO202546.0202007
    [2]LI Yingjuan, XU Kailuan, LIU Peizhen, SONG Jinhong, CAO Yuju, ZHANG Xuhui. Tracking of infrared sea-skimming small target with sea-sky line[J]. Journal of Applied Optics, 2024, 45(1): 70-78. DOI: 10.5768/JAO202445.0102001
    [3]CAI Wei, XU Peiwei, YANG Zhiyong, JIANG Xinhao, JIANG Bo. Dim-small targets detection of infrared images in complex backgrounds[J]. Journal of Applied Optics, 2021, 42(4): 643-650. DOI: 10.5768/JAO202142.0402002
    [4]FAN Pengcheng, ZHANG Weiguo, LIU Wangang, ZHANG Wei, HUANG Weidong, LIU Guodong, XU Xiaofeng. Infrared weak small target detection algorithm based on embedded GPU[J]. Journal of Applied Optics, 2020, 41(5): 1089-1095. DOI: 10.5768/JAO202041.0506004
    [5]LI Xiaoning, LEI Tao, ZHONG Jiandan, TANG Zili, JIANG Ping. Detecting method of small vehicle targets based on improved SSD[J]. Journal of Applied Optics, 2020, 41(1): 150-155. DOI: 10.5768/JAO202041.0103004
    [6]Zhou Yuan, Zhang Jianming, Lin Xiao. Infrared small target detection using weighting LoG operator[J]. Journal of Applied Optics, 2017, 38(1): 114-119. DOI: 10.5768/JAO201738.0106003
    [7]CHEN Dong, LIN Jian-lin, MA De-bao. Small electro-optical target detection based on two-scale wavelet analysis[J]. Journal of Applied Optics, 2011, 32(3): 492-497.
    [8]HE Peng-fei, SU Xin-yan, WANG jian. Small target detection based on image sequences[J]. Journal of Applied Optics, 2011, 32(2): 272-275.
    [9]ZHANG Heng, LI You, LI Li-chun, LEI Zhi-hui. Scale-adaptive real-time detection for small targets[J]. Journal of Applied Optics, 2008, 29(1): 9-13.
    [10]CHEN Dong-yan, ZHANG Qi, WANG Yan-ling, LUO Shi-tu. Implementation of maneuver target prediction in image tracking system[J]. Journal of Applied Optics, 2007, 28(1): 33-37.
  • Cited by

    Periodical cited type(15)

    1. 王婧骅,崔璨,张云飞,段玉玮,赵婉茹. 基于循环神经网络的异常用电数据检测方法. 电子设计工程. 2024(01): 120-123+128 .
    2. 彭雪玲,林珊玲,林志贤,郭太良. 改进的YOLOv5s太阳能电池片缺陷检测算法. 液晶与显示. 2024(02): 237-247 .
    3. 刘玉淇,吴一全. 基于机器视觉的太阳能电池片缺陷检测算法综述. 光学精密工程. 2024(06): 868-900 .
    4. 何翔,杨爱军,黎健生,陈彩云,游宏亮. 基于cycleGAN的太阳电池电致发光图像数据增强方法. 液晶与显示. 2024(08): 1057-1069 .
    5. 林维修,李峰,王海峰,许育燕,金科扬. 基于图像处理的光伏组件热斑缺陷检测方法. 计算技术与自动化. 2024(03): 121-126 .
    6. 李莉杰,高方,李元涛,田壮梅,吕莉源,张梦洁. 储能设备电池极片缺陷检测网络研究. 电力大数据. 2024(06): 22-31 .
    7. 张引贤,张展耀,张希雅. 基于边缘神经网络的海岛光伏表面异常检测. 浙江电力. 2024(12): 95-103 .
    8. 葛钊明,胡跃明. 基于改进YOLOv5的锂电池极片缺陷检测. 激光杂志. 2023(02): 25-29 .
    9. 何翔. 基于DCGANs的半片光伏组件电致发光图像增强技术. 应用光学. 2023(02): 314-322 . 本站查看
    10. 刘耀迪,肖钰蕙,杨超. 智能化光伏缺陷检测系统. 光源与照明. 2023(06): 136-138 .
    11. 王云冰,付晓刚,牛源. 基于无人机光伏巡检的路线优化与故障检测. 上海电机学院学报. 2023(05): 275-280 .
    12. 艾上美,周剑峰,张必朝,张涛,王红斌. 基于改进SSD算法的光伏组件缺陷检测研究. 智慧电力. 2023(12): 53-58 .
    13. 刘敏,陈凌宇,钱洲亥,李治国. 光伏电池片弱边缘缺陷空耦超声特征检测. 制造业自动化. 2022(04): 191-195 .
    14. 符长虹,陈锟辉,鲁昆瀚,郑光泽,赵吉林. 面向边缘智能光学感知的航空紧固件旋转检测. 应用光学. 2022(03): 472-480 . 本站查看
    15. 凌旭峰,周丽婕,祝毓,杨红卫,杨杰. 基于生成式自监督学习的太阳能电池板缺陷检测. 机械制造. 2022(07): 12-18 .

    Other cited types(8)

Catalog

    Article views (962) PDF downloads (75) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return