Citation: | WAN Xin, TIAN Ailing, WANG Dasen, LIU Bingcai, ZHU Xueliang, WANG Hongjun. Large-aperture collimated wavefront evaluation based on sparse subaperture[J]. Journal of Applied Optics, 2022, 43(1): 45-51. DOI: 10.5768/JAO202243.0101008 |
A wavefront evaluation method based on sparse subaperture was proposed for the collimated wavefront of 300 mm aperture wavelength-tuned interferometer. The method used the wavefront data of sparse aperture to construct a uniform and equally spaced subaperture arrangement model and utilized the simultaneous fitting algorithm to realize the reconstruction of the full-aperture collimated wavefront. The change rules of subaperture spacing and subaperture size on the reconstruction accuracy were analyzed by the numerical calculation, and the optimized subaperture arrangement way was obtained. Finally, an optimized subaperture arrangement with a subaperture size of 10.8 mm and an adjacent subaperture center spacing of 9.72 mm was used for the sparse subaperture evaluation of 300 mm aperture collimated wavefront. The simulation results show that the optimized sparse subaperture evaluation wavefront residual peak valley (PV) value is 0.001 6λ and the residual root mean square (RMS) value is 1.689 3e−4λ.
[1] |
LEE Y W. Half-aperture shearing interferometer for collimation testing[J]. Optical Engineering,1993,32(11):2837-2840. doi: 10.1117/12.148124
|
[2] |
孔梅梅, 高志山, 陈磊, 等. 基于偏振移相的环路径向剪切干涉[J]. 光学学报,2010,30(1):127-131. doi: 10.3788/AOS20103001.0127
KONG Meimei, GAO Zhishan, CHEN Lei, et al. Cyclic radial shearing interferometry based on polarization phase-shifting technique[J]. Acta Optica Sinica,2010,30(1):127-131. doi: 10.3788/AOS20103001.0127
|
[3] |
刘蕾, 曾爱军, 朱玲琳, 等. 可用于小口径光束波前检测的横向剪切干涉仪[J]. 中国激光,2014,41(1):170-173.
LIU Lei, ZENG Aijun, ZHU Linglin, et al. Lateral shearing interferometer for the wavefront test of small beam[J]. Chinese Journal of Lasers,2014,41(1):170-173.
|
[4] |
单小琴, 韩志刚, 朱日宏. 基于波长移相剪切干涉的准直波前重构技术[J]. 应用光学,2020,41(1):67-73. doi: 10.5768/JAO202041.0102001
SHAN Xiaoqin, HAN Zhigang, ZHU Rihong, et al. Collimated wavefront reconstruction based on wavelength phase-shifting shear interferometry[J]. Journal of Applied Optics,2020,41(1):67-73. doi: 10.5768/JAO202041.0102001
|
[5] |
PLATT B, SHACK R V. Lenticular Hartmann screen optical[J]. Sciences Center Newsletter,1971,5(1):15-16.
|
[6] |
LANE R G, TALLON M. Wave-front reconstruction using a Shack–Hartmann sensor[J]. Applied Optics,1992,31(32):6902-6908. doi: 10.1364/AO.31.006902
|
[7] |
武旭华, 陈磊, 肖韶荣. 干涉仪准直系统波前质量检测[J]. 红外与激光工程,2008(1):106-110. doi: 10.3969/j.issn.1007-2276.2008.01.025
WU Xuhua, CHEN Lei, XIAO Shaorong. Wavefront testing of collimation beam in phase - shifting interferometer[J]. Infrared and Laser,2008(1):106-110. doi: 10.3969/j.issn.1007-2276.2008.01.025
|
[8] |
刘兆栋, 于丽娜, 韩志刚, 等. 五棱镜扫描法检测大口径近红外干涉仪准直波前[J]. 中国激光,2010,37(4):1082-1087.
LIU Zhaodong, YU Lina, HAN Zhigang, et al. Measurement of the wavefront collimation of a large aperture near-infrared interferometer using a scanning pentaprism system[J]. Chinese Journal of Lasers,2010,37(4):1082-1087.
|
[9] |
汪利华, 吴时彬, 侯溪, 等. 子孔径拼接干涉检测大口径平面波前[J]. 光电工程,2009,36(6):126-130.
WANG Lihua, WU Shibin, HOU Xi, et al. Measurement of flat wavefront by subaperture stitching interferometry[J]. Opto-Electronic Engineering,2009,36(6):126-130.
|
[10] |
王大勇, 韩骥, 刘汉承, 等. 光学稀疏孔径系统的成像及其评价方法[J]. 光子学报,2008,37(6):1208-1212.
WANG Dayong, HAN Ji, LIU Hancheng, et al. Imaging of optical sparse aperture systems and their evaluation methods[J]. Acta Optica Sinica,2008,37(6):1208-1212.
|
[11] |
赵娟, 王大勇, 万玉红, 等. 光学稀疏孔径成像系统复合阵列设计的仿真研究[J]. 光子学报,2009,38(8):1967-1971.
ZHAO Juan, WANG Dayong, WAN Yuhong, et al. Simulation study of composite array design for optical sparse aperture imaging system[J]. Acta Optica Sinica,2009,38(8):1967-1971.
|
[12] |
周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学,2017,10(1):25-38. doi: 10.3788/co.20171001.0025
ZHOU Chenghao, WANG Zhile, ZHU Feng. Review on optical synthetic aperture imaging technique[J]. Chinese Optics,2017,10(1):25-38. doi: 10.3788/co.20171001.0025
|
[13] |
KIM C J. Polynomial fit of interferograms[J]. Applied Optics,1982,21(24):4521-4525. doi: 10.1364/AO.21.004521
|
[14] |
WENG W C, LAWRENCE G N. Method for subaperture testing interferogram reduction[J]. Optics Letters,1983,8(9):468-470. doi: 10.1364/OL.8.000468
|
[15] |
闫锋涛‚范斌‚侯溪‚ 等. 稀疏子孔径采样检测大口径光学器件[J]. 强激光与粒子束‚ 2011, 23(12): 3193-3196.
YAN Fengtao, FAN Bin, HOU Xi, et al. Large aperture mirror testing using sparse sub-aperture sampling[J]. High Power Laser and Particle Beams, 2011, 23(12): 3193-3196.
|
[16] |
王棪, 伏瑞敏, 廖志波. 基于稀疏孔径的波前重构算法[J]. 航天返回与遥感,2015,36(5):51-59.
WANG Yan, FU Ruimin, LIAO Zhibo. Wavefront reconstruction algorithm based on sparse aperture[J]. Spacecraft Recovery & Remote Sensing,2015,36(5):51-59.
|
[17] |
XU X D ‚ SHEN Z X ‚ TONG G D‚ et al. Sparse subaperture stitching method for measuring large aperture planar optics[J]. Optical Engineering‚ 2016‚ 55(2): 024103.
|
[18] |
罗倩, 吴时彬, 汪利华, 等. 稀疏子孔径区域内正交多项式重构波前[J]. 光子学报,2018,47(6):207-214.
LUO Qian, WU Shibin, WANG Lihua, et al. Wavefront reconstruction with orthonormal polynomials in a sparse subsperture area[J]. Acta Photonica Sinica,2018,47(6):207-214.
|
[1] | YANG Weibin, WANG Chunyan, ZHANG Weiguo, WANG Jinyu, XIA Liangping, DU Chunlei, SUN Hao. Method of detecting microlens wavefront by Hartmann sensor[J]. Journal of Applied Optics, 2025, 46(2): 380-387. DOI: 10.5768/JAO202546.0203003 |
[2] | DU Xusheng, BAI Fuzhong, XU Yongxiang, WANG Jianxin. Simulation analysis of iterative wavefront reconstruction algorithm for center-offset radial shearing interference[J]. Journal of Applied Optics, 2024, 45(1): 118-125. DOI: 10.5768/JAO202445.0102006 |
[3] | LU Jiawei, YUAN Daocheng, LIU Qian. Study on characteristics of transmission wavefront of liquid lens[J]. Journal of Applied Optics, 2021, 42(2): 339-345. DOI: 10.5768/JAO202142.0205002 |
[4] | SHAN Xiaoqin, HAN Zhigang, ZHU Rihong. Collimated wavefront reconstruction based on wavelength phase-shifting shear interferometry[J]. Journal of Applied Optics, 2020, 41(1): 67-73. DOI: 10.5768/JAO202041.0102001 |
[5] | Zhang Jiyan, Cao Xingxin. Research on extended field depth of wavefront coding microscope objective[J]. Journal of Applied Optics, 2018, 39(4): 476-482. DOI: 10.5768/JAO201839.0401006 |
[6] | Zhou Xiao-bin, Luan Ya-dong, Shi Lei-lei, Lei Zeng-qiang. Structural parameters calibration of Hartmann-Shack sensor based on known spherical wavefront[J]. Journal of Applied Optics, 2015, 36(6): 909-912. DOI: 10.5768/JAO201536.0603002 |
[7] | Guo Guang-yan, Fan Zhong-wei, Yu Jin, Ge Wen-qi, Kang Zhi-jun, Tang Xiong-xin, Mo Ze-qiang, Wang Hao-cheng, Shi Zhao-hui. Wavefront detection technology based on Shark-Hartmann theory[J]. Journal of Applied Optics, 2014, 35(5): 823-829. |
[8] | LI Hong-zhuang, WANG Zhi-chen, LIU Xin-yue, WEI Pei-feng, MING Ming, MENG Hao-ran. Application of Shack-Hartmann wavefront sensor in optical testing[J]. Journal of Applied Optics, 2012, 33(1): 134-138. |
[9] | SHEN Hong-bin, ZHANG Chu, SHEN Xue-ju, SUN Yu-jie, HUANG Fu-yu, YAN Zong-qun. Real-time wavefront reconstruction based on diffraction grating wavefront curvature sensor[J]. Journal of Applied Optics, 2009, 30(1): 50-55. |
[10] | ZHANG Ming-yi, LI Xin-nan. Accuracy analysis of stitching interferometry for test of largediameter mirror[J]. Journal of Applied Optics, 2006, 27(5): 446-449. |